Daria V Makeeva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2116153/publications.pdf

Version: 2024-02-01

		1478505	1125743	
15	169	6	13	
papers	citations	h-index	g-index	
15	15	15	264	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	CE with Cu2+ ions and 2-hydroxypropyl- \hat{l}^2 -cyclodextrin additives for the investigation of amino acids composition of the culture medium in a cellular model of non-alcoholic fatty liver disease. Journal of Pharmaceutical and Biomedical Analysis, 2022, 213, 114663.	2.8	1
2	Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. TrAC - Trends in Analytical Chemistry, 2021, 134, 116110.	11.4	22
3	Determination of native amino acids and lactic acid inLactobacillus helveticusculture media by capillary electrophoresis using Cu2+and \hat{l}^2 -cyclodextrins as additives. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1156, 122304.	2.3	8
4	Current Status of Capillary Electrophoresis. Journal of Analytical Chemistry, 2020, 75, 1497-1513.	0.9	6
5	Nanosized cation exchanger for the electrophoretic separation and preconcentration of catecholamines and amino acids. Electrophoresis, 2020, 41, 1031-1038.	2.4	6
6	Nano-sized polymer and polymer-coated particles in electrokinetic separations. TrAC - Trends in Analytical Chemistry, 2019, 120, 115656.	11.4	11
7	Poly-4-vinylpiridinium nanosponges as modifiers of the electrophoretic systems for the charged analytes separation. Analitika I Kontrol, 2019, 23, 343-353.	0.2	0
8	Nano-sized anion-exchangers as a stationary phase in capillary electrochromatography for separation and on-line concentration of carboxylic acids. Talanta, 2018, 188, 744-749.	5 . 5	15
9	Nano-sized ion exchangers – stationary phases in capillary electrochromatography. Analitika I Kontrol, 2018, 22, 273-282.	0.2	0
10	On-line in-syringe sugaring-out liquid-liquid extraction coupled with HPLC-MS/MS for the determination of pesticides in fruit and berry juices. Talanta, 2017, 167, 761-767.	5 . 5	79
11	Highly fluorinated polymers with sulfonate, sulfamide and <i>N</i> , <i>N</i> ,ê€diethylamino groups for the capillary electromigration separation of proteins and steroid hormones. Journal of Separation Science, 2017, 40, 3335-3342.	2.5	5
12	New Approach to the Formation of Physically Adsorbed Capillary Coatings Consisting of Hyperbranched Poly(Ethylene Imine) with a Maltose Shell to Enhance the Separation of Catecholamines and Proteins in CE. Chromatographia, 2017, 80, 1683-1693.	1.3	6
13	Oligosaccharide-crowned hyperbranched poly(ethyleneimine) as an additive to thin-layer chromatography systems for the separation of vitamins, amino acids and \hat{l}^2 -blocker enantiomers. Journal of Planar Chromatography - Modern TLC, 2016, 29, 108-112.	1.2	8
14	New highly fluorinated polymers: Modifiers of chromatographic and electrophoretic systems. Protection of Metals and Physical Chemistry of Surfaces, 2015, 51, 1100-1109.	1.1	1
15	Hyperbranched polymers based on polyethyleneimine with terminal oligosaccharide groups as new chiral selectors in high-performance thin-layer chromatography. Journal of Analytical Chemistry, 2015, 70, 1023-1030.	0.9	1