
Josette Garnier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2115610/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environmental Research Letters, 2014, 9, 105011.	5.2	764
2	Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 18-26.	4.0	656
3	Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environmental Research Letters, 2015, 10, 115004.	5.2	332
4	The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agriculture, Ecosystems and Environment, 2013, 164, 32-52.	5.3	293
5	Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Research, 2006, 40, 2972-2980.	11.3	290
6	Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Frontiers in Ecology and the Environment, 2012, 10, 37-43.	4.0	281
7	Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry, 2014, 118, 225-241.	3.5	240
8	Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environmental Research Letters, 2016, 11, 095007.	5.2	227
9	Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER Model applied to the Seine river system. Hydrobiologia, 1994, 289, 119-137.	2.0	206
10	River basin nutrient delivery to the coastal sea: Assessing its potential to sustain new production of non-siliceous algae. Marine Chemistry, 2007, 106, 148-160.	2.3	203
11	Historical land use change has lowered terrestrial silica mobilization. Nature Communications, 2010, 1, 129.	12.8	189
12	The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130123.	4.0	184
13	Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 2017, 238, 25-35.	5.3	178
14	Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation. Bioresource Technology, 2008, 99, 2200-2209.	9.6	168
15	Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 2015, 48, 396-407.	6.3	165
16	Modeling the Response of Water Quality in the Seine River Estuary to Human Activity in Its Watershed over the Last 50 Years. Estuaries and Coasts, 2001, 24, 977.	1.7	162
17	Relationships for estimating N ₂ fixation in legumes: incidence for N balance of legumeâ€based cropping systems in Europe. Ecosphere, 2015, 6, 1-24.	2.2	155
18	Assessing Nitrification and Denitrification in the Seine River and Estuary Using Chemical and Isotopic Techniques. Ecosystems, 2006, 9, 564-577.	3.4	145

#	Article	IF	CITATIONS
19	Nitrification and Nitrifying Bacteria in the LowerSeine River and Estuary(France). Applied and Environmental Microbiology, 2003, 69, 7091-7100.	3.1	142
20	N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochemical Cycles, 2010, 24, .	4.9	138
21	Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry, 2013, 113, 481-505.	3.5	126
22	Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia, 2007, 588, 245-259.	2.0	122
23	The contribution of food waste to global and European nitrogen pollution. Environmental Science and Policy, 2013, 33, 186-195.	4.9	120
24	The changing flow regime and sediment load of the Red River, Viet Nam. Journal of Hydrology, 2007, 334, 199-214.	5.4	115
25	Nutrient dynamics and control of eutrophication in the Marne River system: modelling the role of exchangeable phosphorus. Journal of Hydrology, 2005, 304, 397-412.	5.4	107
26	Testing an integrated river–ocean mathematical tool for linking marine eutrophication to land use: The Phaeocystis-dominated Belgian coastal zone (Southern North Sea) over the past 50Âyears. Journal of Marine Systems, 2007, 64, 216-228.	2.1	107
27	Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: Detection, quantification and growth along the lower Seine River (France). Water Research, 2005, 39, 4979-4992.	11.3	105
28	Denaturing Gradient Gel Electrophoretic Analysis of Ammonia-Oxidizing Bacterial Community Structure in the Lower Seine River: Impact of Paris Wastewater Effluents. Applied and Environmental Microbiology, 2004, 70, 6726-6737.	3.1	102
29	Nutrient fluxes and water quality in the drainage network of the Scheldt basin over the last 50Âyears. Hydrobiologia, 2005, 540, 47-67.	2.0	99
30	Nitrogen Behaviour and Nitrous Oxide Emission in the Tidal Seine River Estuary (France) as Influenced by Human Activities in the Upstream Watershed. Biogeochemistry, 2006, 77, 305-326.	3.5	98
31	A biogeochemical view of the global agro-food system: Nitrogen flows associated with protein production, consumption and trade. Clobal Food Security, 2014, 3, 209-219.	8.1	97
32	How the structure of agro-food systems shapes nitrogen, phosphorus, and carbon fluxes: The generalized representation of agro-food system applied at the regional scale in France. Science of the Total Environment, 2017, 586, 42-55.	8.0	97
33	The food-print of Paris: long-term reconstruction of the nitrogen flows imported into the city from its rural hinterland. Regional Environmental Change, 2009, 9, 13-24.	2.9	94
34	Long-term water quality in the lower Seine: Lessons learned over 4 decades of monitoring. Environmental Science and Policy, 2016, 58, 141-154.	4.9	92
35	Lower Seine River and Estuary (France) Carbon and Oxygen Budgets during Low Flow. Estuaries and Coasts, 2001, 24, 964.	1.7	87
36	Reshaping the European agro-food system and closing its nitrogen cycle: The potential of combining dietary change, agroecology, and circularity. One Earth, 2021, 4, 839-850.	6.8	85

#	Article	IF	CITATIONS
37	Diffuse and Point Sources of Silica in the Seine River Watershed. Environmental Science & Technology, 2006, 40, 6630-6635.	10.0	84
38	Nitrous oxide (N2O) in the Seine river and basin: Observations and budgets. Agriculture, Ecosystems and Environment, 2009, 133, 223-233.	5.3	83
39	Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France). Agricultural and Forest Meteorology, 2010, 150, 1192-1202.	4.8	83
40	Supply of organic matter and bacteria to aquatic ecosystems through waste water effluents. Water Research, 1999, 33, 3521-3531.	11.3	82
41	Nitrogen as a threat to European water quality. , 2011, , 379-404.		80
42	Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication. Science of the Total Environment, 1999, 243-244, 43-52.	8.0	79
43	Hydrological regime and water budget of the Red River Delta (Northern Vietnam). Journal of Asian Earth Sciences, 2010, 37, 219-228.	2.3	79
44	A vast range of opportunities for feeding the world in 2050: trade-off between diet, N contamination and international trade. Environmental Research Letters, 2015, 10, 025001.	5.2	79
45	The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems. Science of the Total Environment, 2018, 636, 427-436.	8.0	79
46	How changes in diet and trade patterns have shaped the N cycle at the national scale: Spain (1961–2009). Regional Environmental Change, 2014, 14, 785-797.	2.9	78
47	Nutrient transfer in three contrasting NW European watersheds: The Seine, Somme, and Scheldt Rivers. A comparative application of the Seneque/Riverstrahler model. Water Research, 2009, 43, 1740-1754.	11.3	77
48	Title is missing!. Hydrobiologia, 1999, 410, 151-166.	2.0	72
49	Reconnecting crop and cattle farming to reduce nitrogen losses to river water of an intensive agricultural catchment (Seine basin, France): past, present and future. Environmental Science and Policy, 2016, 63, 76-90.	4.9	72
50	Long-term changes in greenhouse gas emissions from French agriculture and livestock (1852–2014): From traditional agriculture to conventional intensive systems. Science of the Total Environment, 2019, 660, 1486-1501.	8.0	72
51	The effect of environmental and therapeutic concentrations of antibiotics on nitrate reduction rates in river sediment. Water Research, 2013, 47, 3654-3662.	11.3	69
52	Modelling the N cascade in regional watersheds: The case study of the Seine, Somme and Scheldt rivers. Agriculture, Ecosystems and Environment, 2009, 133, 234-246.	5.3	68
53	SENEQUE: A multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Science of the Total Environment, 2007, 375, 257-273.	8.0	67
54	The Seine system: Introduction to a multidisciplinary approach of the functioning of a regional river system. Science of the Total Environment, 2007, 375, 1-12.	8.0	64

#	Article	IF	CITATIONS
55	Contribution of heterotrophic bacterial production to the carbon budget of the river Seine (France). Microbial Ecology, 1993, 25, 19-33.	2.8	63
56	Transformations of nutrients (N, P, Si) in the turbidity maximum zone of the Seine estuary and export to the sea. Estuarine, Coastal and Shelf Science, 2010, 90, 129-141.	2.1	63
57	Nutrient (N, P) budgets for the Red River basin (Vietnam and China). Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	62
58	Two contrasted future scenarios for the French agro-food system. Science of the Total Environment, 2018, 637-638, 695-705.	8.0	59
59	Nitrogen as a threat to the European greenhouse balance. , 2011, , 434-462.		58
60	The role of water nitrogen retention in integrated nutrient management: assessment in a large basin using different modelling approaches. Environmental Research Letters, 2015, 10, 065008.	5.2	58
61	Carbon dioxide, methane and nitrous oxide emissions from the human-impacted Seine watershed in France. Science of the Total Environment, 2018, 643, 247-259.	8.0	58
62	Phosphorus budget in the Marne Watershed (France): urban vs. diffuse sources, dissolved vs. particulate forms. Biogeochemistry, 2005, 72, 35-66.	3.5	56
63	Declining spatial efficiency of global cropland nitrogen allocation. Global Biogeochemical Cycles, 2017, 31, 245-257.	4.9	55
64	Nitrogen flows from European regional watersheds to coastal marine waters. , 0, , 271-297.		54
65	Cost assessment and ecological effectiveness of nutrient reduction options for mitigating Phaeocystis colony blooms in the Southern North Sea: An integrated modeling approach. Science of the Total Environment, 2011, 409, 2179-2191.	8.0	54
66	Phosphorus budget in the waterâ€agroâ€food system at nested scales in two contrasted regions of the world (ASEANâ€8 and EUâ€27). Global Biogeochemical Cycles, 2015, 29, 1348-1368.	4.9	54
67	Anthropogenic nitrogen autotrophy and heterotrophy of the world's watersheds: Past, present, and future trends. Global Biogeochemical Cycles, 2010, 24, .	4.9	51
68	Bacterioplankton in the Seine River (France): impact of the Parisian urban effluent. Canadian Journal of Microbiology, 1992, 38, 56-64.	1.7	50
69	History of the urban environmental imprint: introduction to a multidisciplinary approach to the long-term relationships between Western cities and their hinterland. Regional Environmental Change, 2012, 12, 249-253.	2.9	50
70	Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France). Nutrient Cycling in Agroecosystems, 2014, 100, 285-299.	2.2	49
71	New tools for modelling water quality of hydrosystems: An application in the Seine River basin in the frame of the Water Framework Directive. Science of the Total Environment, 2007, 375, 274-291.	8.0	48
72	River ecosystem modelling: application of the PROSE model to the Seine river (France). Hydrobiologia, 1998, 373/374, 27-45.	2.0	46

#	Article	IF	CITATIONS
73	Nitrogen removal in a wastewater treatment plant through biofilters: nitrous oxide emissions during nitrification and denitrification. Bioprocess and Biosystems Engineering, 2006, 29, 323-333.	3.4	46
74	Origin and fate of phosphorus in the Seine watershed (France): Agricultural and hydrographic P budgets. Journal of Geophysical Research, 2007, 112, .	3.3	46
75	Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission. Hydrobiologia, 2007, 588, 291-302.	2.0	46
76	Nitrogen processes in aquatic ecosystems. , 2011, , 126-146.		46
77	Ecological functioning of the Marne reservoir (upper Seine basin, France). River Research and Applications, 2000, 16, 51-71.	0.8	45
78	Modelling nutrient fluxes from sub-arctic basins: Comparison of pristine vs. dammed rivers. Journal of Marine Systems, 2008, 73, 236-249.	2.1	45
79	Restoration of ponds in rural landscapes: Modelling the effect on nitrate contamination of surface water (the Seine River Basin, France). Science of the Total Environment, 2012, 430, 280-290.	8.0	44
80	Modelling nutrient exchange at the sediment–water interface of river systems. Journal of Hydrology, 2007, 341, 55-78.	5.4	43
81	Production vs. Respiration in river systems: An indicator of an "ecological status― Science of the Total Environment, 2007, 375, 110-124.	8.0	43
82	Nutrient (N, P, Si) transfers in the subtropical Red River system (China and Vietnam): Modelling and budget of nutrient sources and sinks. Journal of Asian Earth Sciences, 2010, 37, 259-274.	2.3	43
83	Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s–2010): The role of land use, waterscape and urban wastewater management. Journal of Marine Systems, 2013, 128, 62-76.	2.1	43
84	Water management practices exacerbate nitrogen retention in Mediterranean catchments. Science of the Total Environment, 2016, 573, 420-432.	8.0	43
85	N, P, Si budgets for the Red River Delta (northern Vietnam): how the delta affects river nutrient delivery to the sea. Biogeochemistry, 2012, 107, 241-259.	3.5	42
86	Nitrous oxide emissions and nitrate leaching in an organic and a conventional cropping system (Seine) Tj ETQqO	0	Overlock 101
87	The fate of phosphorus. Nature Geoscience, 2016, 9, 343-344.	12.9	41
88	Temperature dependence of nitrous oxide production of a luvisolic soil in batch experiments. Process Biochemistry, 2015, 50, 79-85.	3.7	40
89	Long-term biogeochemical functioning of the Red River (Vietnam): past and present situations.	2.9	40

⁹⁰Nitrogen cycling in a hypothetical scenario of generalised organic agriculture in the Seine, Somme
and Scheldt watersheds. Regional Environmental Change, 2011, 11, 359-370.2.939

#	Article	IF	CITATIONS
91	Indirect N2O emissions from shallow groundwater in an agricultural catchment (Seine Basin,) Tj ETQq1 1 0.7843	14.rgBT /0 3.g	Ovgrlock 10 T
92	Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea. Science of the Total Environment, 2010, 408, 1245-1255.	8.0	37
93	The biogeochemical imprint of human metabolism in Paris Megacity: A regionalized analysis of a water-agro-food system. Journal of Hydrology, 2019, 573, 1028-1045.	5.4	37
94	Field and modelling studies of Escherichia coli loads in tropical streams of montane agro-ecosystems. Journal of Hydro-Environment Research, 2015, 9, 496-507.	2.2	36
95	Typical features of particulate phosphorus in the Seine estuary (France). Hydrobiologia, 2007, 588, 271-290.	2.0	35
96	Nutrient inputs and hydrology together determine biogeochemical status of the Loire River (France): Current situation and possible future scenarios. Science of the Total Environment, 2018, 637-638, 609-624.	8.0	35
97	Budget of methane emissions from soils, livestock and the river network at the regional scale of the Seine basin (France). Biogeochemistry, 2013, 116, 199-214.	3.5	34
98	Potential for recoupling production and consumption in peri-urban territories: The case-study of the Saclay plateau near Paris, France. Food Policy, 2017, 69, 35-45.	6.0	33
99	Long-term nitrate removal in a buffering pond-reservoir system receiving water from an agricultural drained catchment. Ecological Engineering, 2015, 80, 32-45.	3.6	32
100	Modeling nutrient (N, P, Si) budget in the Seine watershed: Application of the Riverstrahler model using data from local to global scale resolution. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	31
101	Organic carbon and bacterial heterotrophic activity in the maximum turbidity zone of the Seine estuary (France). Aquatic Sciences, 2006, 68, 78-85.	1.5	31
102	Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments. Environmental Science and Pollution Research, 2015, 22, 13702-13709.	5.3	31
103	Impact of hydro-sedimentary processes on the dynamics of soluble reactive phosphorus in the Seine River. Biogeochemistry, 2015, 122, 229-251.	3.5	31
104	Subregional and downscaled global scenarios of nutrient transfer in river basins: Seine‧omme‧cheldt case study. Global Biogeochemical Cycles, 2010, 24, .	4.9	30
105	A report card and quality indicators for the Seine estuary: From scientific approach to operational tool. Marine Pollution Bulletin, 2008, 57, 187-201.	5.0	28
106	Seasonal and spatial variability of the partial pressure of carbon dioxide in the human-impacted Seine River in France. Scientific Reports, 2018, 8, 13961.	3.3	28
107	Nitrate retention at the river–watershed interface: a new conceptual modeling approach. Biogeochemistry, 2018, 139, 31-51.	3.5	28
108	Landward Perspective of Coastal Eutrophication Potential Under Future Climate Change: The Seine River Case (France). Frontiers in Marine Science, 2018, 5, .	2.5	28

#	Article	IF	CITATIONS
109	Determining the domestic specific loads of two wastewater plants of the Paris conurbation (France) with contrasted treatments: A step for exploring the effects of the application of the European Directive. Water Research, 2006, 40, 3257-3266.	11.3	27
110	Nitrous oxide production from soil experiments: denitrification prevails over nitrification. Nutrient Cycling in Agroecosystems, 2014, 98, 169-186.	2.2	27
111	The response of river nitrification to changes in wastewater treatment (The case of the lower Seine) Tj ETQq1 1	0.784314 ı 0.6	gBT /Overloc
112	Phosphorus management in cropping systems of the Paris Basin: From farm to regional scale. Journal of Environmental Management, 2018, 205, 18-28.	7.8	26
113	Crop production and nitrogen use in European cropland and grassland 1961–2019. Scientific Data, 2021, 8, 288.	5.3	26
114	Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France). Estuarine, Coastal and Shelf Science, 2008, 77, 150-162.	2.1	25
115	Nitrogen dynamics in cropping systems under Mediterranean climate: a systemic analysis. Environmental Research Letters, 2021, 16, 073002.	5.2	25
116	La place du transport de denrées agricoles dans le cycle biogéochimique de l'azote en FranceÂ: un aspect de la spécialisation des territoires. Cahiers Agricultures, 2016, 25, 15004.	0.9	25
117	Modelling benthic denitrification processes over a whole drainage network. Journal of Hydrology, 2009, 379, 239-250.	5.4	24
118	Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER Model applied to the Seine river system. , 1994, , 119-137.		24
119	Total organic carbon fluxes of the Red River system (Vietnam). Earth Surface Processes and Landforms, 2017, 42, 1329-1341.	2.5	23
120	Drivers of long-term carbon dynamics in cropland: A bio-political history (France, 1852–2014). Environmental Science and Policy, 2019, 93, 53-65.	4.9	23
121	Nitrogen processes in coastal and marine ecosystems. , 2011, , 147-176.		22
122	Utilization of interferometric light microscopy for the rapid analysis of virus abundance in a river. Research in Microbiology, 2017, 168, 413-418.	2.1	22
123	A N, P, C, and water flows metabolism study in a peri-urban territory in France: The case-study of the Saclay plateau. Resources, Conservation and Recycling, 2018, 137, 200-213.	10.8	22
124	Estimating the Benthic Population of Dreissena polymorpha and Its Impact in the Lower Seine River, France. Estuaries and Coasts, 2001, 24, 1003.	1.7	21
125	Level-dependence of the relationships between amphibian biodiversity and environment in pond systems within an intensive agricultural landscape. Hydrobiologia, 2014, 723, 7-23.	2.0	21
126	Long trend reduction of phosphorus wastewater loading in the Seine: determination of phosphorus speciation and sorption for modeling algal growth. Environmental Science and Pollution Research, 2018, 25, 23515-23528.	5.3	21

#	Article	IF	CITATIONS
127	Phosphorus adsorption/desorption processes in the tropical Saigon River estuary (Southern Vietnam) impacted by a megacity. Estuarine, Coastal and Shelf Science, 2019, 227, 106321.	2.1	21
128	A participative network of organic and conventional crop farms in the Seine Basin (France) for evaluating nitrate leaching and yield performance. Agricultural Systems, 2016, 148, 105-113.	6.1	20
129	Hydromorphology of coastal zone and structure of watershed agro-food system are main determinants of coastal eutrophication. Environmental Research Letters, 2021, 16, 023005.	5.2	20
130	Managing the Agri-Food System of Watersheds to Combat Coastal Eutrophication: A Land-to-Sea Modelling Approach to the French Coastal English Channel. Geosciences (Switzerland), 2019, 9, 441.	2.2	19
131	Does eutrophication enhance greenhouse gas emissions in urbanized tropical estuaries?. Environmental Pollution, 2022, 303, 119105.	7.5	19
132	Potential of denitrification and nitrous oxide production from agricultural soil profiles (Seine) Tj ETQq0 0 0 rgBT	/Overlock 2:2	10 Tf 50 542
133	How can water quality be improved when the urban waste water directive has been fulfilled? A case study of the Lot river (France). Environmental Science and Pollution Research, 2018, 25, 11924-11939.	5.3	18
134	Nutrient budgets in the Saigon–Dongnai River basin: Past to future inputs from the developing Ho Chi Minh megacity (Vietnam). River Research and Applications, 2020, 36, 974-990.	1.7	18
135	Understanding the oxygen budget and related ecological processes in the river Mosel: the RIVERSTRAHLER approach. , 1999, , 151-166.		18
136	High denitrification potential but low nitrous oxide emission in a constructed wetland treating nitrate-polluted agricultural run-off. Science of the Total Environment, 2021, 779, 146614.	8.0	17
137	Modeling inorganic carbon dynamics in the Seine River continuum in France. Hydrology and Earth System Sciences, 2020, 24, 2379-2398.	4.9	16
138	Ecological interactions in a shallow sand-pit lake (Lake Créteil, Parisian Basin, France): a modelling approach. Hydrobiologia, 1994, 275-276, 97-114.	2.0	15
139	A simplified algorithm for calculating benthic nutrient fluxes in river systems. Annales De Limnologie, 2015, 51, 37-47.	0.6	15
140	Crossâ€scale effects of structural and functional connectivity in pond networks on amphibian distribution in agricultural landscapes. Freshwater Biology, 2019, 64, 997-1014.	2.4	15
141	Modeling the biogeochemical functioning of the Seine estuary and its coastal zone: Export, retention, and transformations. Limnology and Oceanography, 2019, 64, 895-912.	3.1	15
142	Modeling indirect N2O emissions along the N cascade from cropland soils to rivers. Biogeochemistry, 2020, 148, 207-221.	3.5	14
143	Mitigation and quantification of greenhouse gas emissions in Mediterranean cropping systems. Agriculture, Ecosystems and Environment, 2017, 238, 1-4.	5.3	11
144	Long-term assessment of nutrient budgets for the four reservoirs of the Seine Basin (France). Science of the Total Environment, 2021, 778, 146412.	8.0	11

#	Article	IF	CITATIONS
145	The nitrogen cascade in arable crop areas of the North of France. Cahiers Agricultures, 2013, 22, 272-281.	0.9	10
146	Storage or loss of soil active carbon in cropland soils: The effect of agricultural practices and hydrology. Geoderma, 2022, 407, 115538.	5.1	10
147	Nutrient transport and transformation in macrotidal estuaries of the French Atlantic coast: a modeling approach using the Carbon-Generic Estuarine Model. Biogeosciences, 2022, 19, 931-955.	3.3	10
148	Trajectories of the Seine River Basin. Handbook of Environmental Chemistry, 2020, , 1-28.	0.4	9
149	Organic market gardening around the Paris agglomeration: agro-environmental performance and capacity to meet urban requirements. Environmental Science and Pollution Research, 2018, 25, 23373-23382.	5.3	8
150	The Seine Watershed Water-Agro-Food System: Long-Term Trajectories of C, N and P Metabolism. Handbook of Environmental Chemistry, 2020, , 91-115.	0.4	8
151	Modelling of faecal indicator bacteria (FIB) in the Red River basin (Vietnam). Environmental Monitoring and Assessment, 2016, 188, 517.	2.7	7
152	Carbon Dioxide Emission and Soil Sequestration for the French Agro-Food System: Present and Prospective Scenarios. Frontiers in Sustainable Food Systems, 2019, 3, .	3.9	7
153	Carbon Dynamics Along the Seine River Network: Insight From a Coupled Estuarine/River Modeling Approach. Frontiers in Marine Science, 2019, 6, .	2.5	7
154	Quantification de bactéries nitrifiantes du genre Nitrobacter en milieux aquatiques (l'estuaire de la) Tj ETQq0 C	0 rgBT /C	overlock 10 T
155	Nitrogen driving force and pressure relationships at contrasting scales: Implications for catchment management. International Journal of River Basin Management, 2009, 7, 221-232.	2.7	6
156	Leakage of nitrous oxide emissions within the Spanish agro-food system in 1961–2009. Mitigation and Adaptation Strategies for Global Change, 2014, 21, 975.	2.1	6
157	Organic carbon transfers in the subtropical Red River system (Viet Nam): insights on CO2 sources and sinks. Biogeochemistry, 2018, 138, 277-295.	3.5	6
158	Nitrogen biogeochemistry of water-agro-food systems: the example of the Seine land-to-sea continuum. Biogeochemistry, 2021, 154, 307-321.	3.5	6
159	Opening to Distant Markets or Local Reconnection of Agro-Food Systems? Environmental Consequences at Regional and Global Scales. , 2019, , 391-413.		5
160	Global Nitrogen and Phosphorus Pollution. , 2020, , 421-431.		4
161	Reservoirs change pCO2 and water quality of downstream rivers: Evidence from three reservoirs in the Seine Basin. Water Research, 2022, 213, 118158.	11.3	4

¹⁶²Contribution from a eutrophic temperate estuary to the landscape flux of nitrous oxide. Water
Research, 2022, 222, 118874.11.33

#	Article	IF	CITATIONS
163	Riverine carbon flux from the Red River system (Viet Nam and China): a modelling approach. APN Science Bulletin, 2017, 7, .	0.7	2
164	Long Term Trends in Agronomical and Environmental Performances of World Cropping Systems: The Relationship Between Yield and Nitrogen Input to Cropland at the Country and Regional Scales. , 2020, , 29-45.		2
165	Émissions d'oxyde nitreux lors du traitement de l'azote des eaux usées de l'agglomération par état actuel et prévisions. Revue Des Sciences De L'Eau, 0, 20, 149-161.	isienneÂ: 0.2	1
166	Nitrogen Embedded in Global Food Trade. , 2019, , 105-109.		1
167	River Basin Visions: Tools and Approaches from Yesterday to Tomorrow. Handbook of Environmental Chemistry, 2020, , 381-414.	0.4	1
168	Ecological functioning of the Marne reservoir (upper Seine basin, France). River Research and Applications, 2000, 16, 51-71.	0.8	1
169	Analyser une transition agro-alimentaireÂpar les flux d'azoteÂ: Aussois un cas d'étude du découplage progressif de la production et de la consommation. Revue D'economie Regionale Et Urbaine, 2018, Décembre, 967-991.	0.2	1
170	Continental Atlantic Rivers: The Meuse, Loire and Adour-Garonne Basins. , 2022, , 225-228.		1