Lukasz Skowronski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2115264/publications.pdf

Version: 2024-02-01

70 1,044 19
papers citations h-index

70

docs citations

h-index g-index

70 1078
times ranked citing authors

477307

29

70 all docs

#	Article	IF	CITATIONS
1	Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Applied Surface Science, 2017, 421, 349-356.	6.1	78
2	Laser-induced oxidation of titanium substrate: Analysis of the physicochemical structure of the surface and sub-surface layers. Applied Surface Science, 2015, 325, 217-226.	6.1	60
3	Permittivity of Ge, Te and Se thin films in the 200â€"1500â€"nm spectral range. Predicting the segregation effects in silver. Materials Science in Semiconductor Processing, 2018, 81, 64-67.	4.0	48
4	Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes. Optical Materials, 2015, 42, 24-34.	3.6	46
5	Characterization of microstructural, mechanical and optical properties of TiO2 layers deposited by GIMS and PMS methods. Surface and Coatings Technology, 2015, 282, 16-23.	4.8	44
6	Optical properties of laser induced oxynitride films on titanium. Applied Surface Science, 2014, 304, 107-114.	6.1	43
7	Optical properties of coumarins containing copolymers. Optical Materials, 2015, 47, 18-23.	3.6	42
8	Optical characterization of heterocyclic azo dyes containing polymers thin films. Applied Surface Science, 2017, 421, 361-366.	6.1	42
9	Evidence of germanium segregation in gold thin films. Surface Science, 2018, 674, 73-78.	1.9	40
10	Influence of peripheral substituents on the optical properties of heterocyclic azo dyes. Optical Materials, 2015, 49, 325-329.	3.6	39
11	Functionalized polymers with strong push-pull azo chromophores in side chain for optical application. Optical Materials, 2018, 85, 391-398.	3.6	32
12	Chemical and structural characterization of tungsten nitride (WNx) thin films synthesized via Gas Injection Magnetron Sputtering technique. Vacuum, 2019, 165, 266-273.	3.5	28
13	Optical TiO2 layers deposited on polymer substrates by the Gas Injection Magnetron Sputtering technique. Applied Surface Science, 2019, 466, 12-18.	6.1	27
14	Characterization of optical and microstructural properties of semitransparent TiO2/Ti/glass interference decorative coatings. Applied Surface Science, 2016, 388, 731-740.	6.1	25
15	Optical properties of disperse dyes doped poly(methyl methacrylate). Molecular Crystals and Liquid Crystals, 2016, 639, 87-93.	0.9	23
16	Spectroscopic ellipsometry study of the dielectric response of Au–In and Ag–Sn thin-film couples. Applied Surface Science, 2010, 256, 4839-4844.	6.1	21
17	Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate. Applied Surface Science, 2016, 381, 36-41.	6.1	21
18	Physico-Chemical and Light-Induced Properties of Quinoline Azo-dyes Polymers. International Journal of Molecular Sciences, 2020, 21, 5755.	4.1	20

#	Article	IF	CITATIONS
19	Optical and microstructural characterisation of Au–Sn and Cu–Sn diffusive layers. Applied Surface Science, 2013, 281, 30-37.	6.1	19
20	TiO2-based decorative coatings deposited on the AISI 316L stainless steel and glass using an industrial scale magnetron. Thin Solid Films, 2017, 627, 1-8.	1.8	19
21	Relation between modulation frequency of electric power oscillation during pulse magnetron sputtering deposition of MoNx thin films. Applied Surface Science, 2018, 456, 789-796.	6.1	19
22	Characterisation of coloured TiO /Ti/glass systems. Applied Surface Science, 2014, 322, 209-214.	6.1	18
23	Growth model and structure evolution of Ag layers deposited on Ge films. Beilstein Journal of Nanotechnology, 2018, 9, 66-76.	2.8	17
24	Novel GIMS technique for deposition of colored Ti/TiOâ,, coatings on industrial scale. Materials Science-Poland, 2016, 34, 137-141.	1.0	16
25	Optical and microstructural properties of decorative Al/Ti/TiO2 interference coatings. Applied Surface Science, 2017, 421, 794-801.	6.1	15
26	Microstructure and opto-electronic properties of Sn-rich Au-Sn diffusive solders. Applied Surface Science, 2018, 451, 32-39.	6.1	13
27	Synthesis, Optical, and Morphological Studies of ZnO Powders and Thin Films Fabricated by Wet Chemical Methods. Materials, 2020, 13, 2559.	2.9	13
28	Influence of generation control of the magnetron plasma on structure and properties of copper nitride layers. Thin Solid Films, 2020, 694, 137731.	1.8	12
29	Structural and Micromechanical Properties of Nd:YAG Laser Marking Stainless Steel (AISI 304 and AISI) Tj ETQq1 1	. <u>9.7</u> 8431	4 _I gBT /Ove
30	Optical and microstructural characterization of amorphous-like Al 2 O 3, SnO 2 and TiO 2 thin layers deposited using a pulse gas injection magnetron sputtering technique. Thin Solid Films, 2017, 632, 112-118.	1.8	11
31	Synthesis of Copper Nitride Layers by the Pulsed Magnetron Sputtering Method Carried out under Various Operating Conditions. Materials, 2021, 14, 2694.	2.9	11
32	Optically transparent boron-doped nanocrystalline diamond films for spectroelectrochemical measurements on different substrates. IOP Conference Series: Materials Science and Engineering, 2016, 104, 012024.	0.6	10
33	The effect of thickness and optical constants of the dielectric layer on the color behaviour of the glass/Ti/TiO2 decorative coatings. Thin Solid Films, 2019, 691, 137595.	1.8	10
34	Structure of Cuâ€"N layers synthesized by pulsed magnetron sputtering with variable frequency of plasma generation. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 167-170.	1.4	8
35	The effect of the deposition rate on microstructural and opto-electronic properties of \hat{l}^2 -Sn layers. Thin Solid Films, 2019, 670, 86-92.	1.8	8
36	Structural analysis of In/Ag, In/Cu and In/Pd thin films on tungsten by ellipsometric, XRD and AES methods. Applied Surface Science, 2008, 254, 4401-4407.	6.1	7

3

#	Article	IF	Citations
37	TiO2 - based decorative interference coatings produced at industrial conditions. Thin Solid Films, 2020, 711, 138294.	1.8	7
38	The effect of the deposition rate on morphology, opto-electronic properties and formation intermetallic compounds of Au–Sn alloys. Journal of Alloys and Compounds, 2020, 849, 156041.	5.5	7
39	Microstructure and Optical Properties of E-Beam Evaporated Zinc Oxide Filmsâ€"Effects of Decomposition and Surface Desorption. Materials, 2020, 13, 3510.	2.9	7
40	Influence of phosphorus ion implantation on the optical properties of CdTe bulk crystal. Journal of Alloys and Compounds, 2020, 844, 156002.	5.5	7
41	Microstructure and Optical Properties of Nanostructural Thin Films Fabricated through Oxidation of Au–Sn Intermetallic Compounds. Materials, 2021, 14, 4034.	2.9	7
42	Copper Nitride Nanowire Arraysâ€"Comparison of Synthetic Approaches. Materials, 2021, 14, 603.	2.9	7
43	Spectroscopic ellipsometry and photoluminescence investigation of Zn1-x-yBexMgySe and Cd1-x-yBexZnySe crystals. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 854-858.	1.8	6
44	Optical spectra of Zn1-xBexTe mixed crystals determined by IRâ€"VISâ€"UV ellipsometry and photoluminescence measurements. Thin Solid Films, 2011, 519, 2795-2800.	1.8	6
45	The potential of multivariate analysis to phase identification based on X-ray diffraction patterns. Chemometrics and Intelligent Laboratory Systems, 2014, 135, 126-132.	3.5	6
46	The influence of thermal stability on the properties of Cu3N layers synthesized by pulsed magnetron sputtering method. Thin Solid Films, 2021, 735, 138889.	1.8	6
47	Methodology for determining selected characteristics of polyethylene dyeing using CIELab system. Polimery, 2019, 64, 690-696.	0.7	6
48	Lattice absorption of Beâ€containing semiconductor alloys determined by spectroscopic ellipsometry. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 849-853.	1.8	5
49	Non-destructive characterization of In/Ag and In/Cu diffusive layers. Journal of Alloys and Compounds, 2009, 479, 583-588.	5.5	5
50	Multimode phonon structure of Beâ€containing II ―VI mixed crystals determined by IR spectroscopic ellipsometry. Crystal Research and Technology, 2010, 45, 625-633.	1.3	5
51	Multi-sided metallization of textile fibres by using magnetron system with grounded cathode. Materials Science-Poland, 2017, 35, 639-646.	1.0	5
52	Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures. Beilstein Journal of Nanotechnology, 2019, 10, 238-246.	2.8	4
53	In-situ monitoring of electropolymerization processes at boron-doped diamond electrodes by Mach-Zehnder interferometer. Sensors and Actuators B: Chemical, 2020, 304, 127315.	7.8	4
54	Assessment of the effects of laser marking of surface layer of polypropylene molding. Polimery, 2018, 63, 799-806.	0.7	4

#	Article	IF	CITATIONS
55	Design of thin DLC/TiO2 film interference coatings on glass screen protector using a neon–argon-based gas injection magnetron sputtering technique. Diamond and Related Materials, 2022, 123, 108859.	3.9	4
56	Optical Properties of Titanium in the Regime of the Limited Light Penetration. Materials, 2020, 13, 952.	2.9	3
57	Distance Effects of Phenylpiperazine-Containing Methacrylic Polymers on Optical and Structural Properties. Journal of Physical Chemistry B, 2021, 125, 10629-10638.	2.6	3
58	Linear and nonlinear optical properties of heterocyclic azo dyes with hetaryldiazenyl substitution. Molecular Crystals and Liquid Crystals, 2018, 670, 153-159.	0.9	2
59	Influence of methyl group in a quinoline moiety on optical and light-induced properties of side-chain azo-polymers. Applied Nanoscience (Switzerland), 0 , 1 .	3.1	2
60	The enhanced light diffuse reflection of laser marking Al substrate for the back reflector purpose. Optics and Laser Technology, 2021, 144, 107371.	4.6	2
61	The Influence of Annealing on the Optical Properties and Microstructure Recrystallization of the TiO2 Layers Produced by Means of the E-BEAM Technique. Materials, 2021, 14, 5863.	2.9	2
62	Vibrational spectroscopy studies of methacrylic polymers containing heterocyclic azo dyes. Vibrational Spectroscopy, 2022, 120, 103377.	2.2	2
63	Optical properties of diarylethylene polymers. , 2016, , .		1
64	Correlation between optical and thermal properties in ZnMgSe solid solutions. Materials Chemistry and Physics, 2017, 186, 541-545.	4.0	1
65	New highly fluorescent silver complexes and their thin films obtained by spin coating method. New Journal of Chemistry, 2018, 42, 18559-18568.	2.8	1
66	IRâ€VISâ€UV ellipsometry, XRD and AES investigation of In/Cu and In/Pd thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1141-1144.	0.8	0
67	Synthesis and optical properties of poly[4-methacryloxy-(4′-carboxy)-azobenzene]. Molecular Crystals and Liquid Crystals, 2018, 672, 178-185.	0.9	0
68	Optical and Microstructural Characterization of Thin Layers. Crystals, 2020, 10, 749.	2.2	0
69	Optical characterization of thin Al ₂ O ₃ layers deposited by magnetron sputtering technique at industrial conditions for applications in glazing. Materials Science-Poland, 2020, 38, 108-115.	1.0	0
70	Influence of the Microstructure and Optical Constants on Plasmonic Properties of Copper Nanolayers. Materials, 2021, 14, 7292.	2.9	O