Raffaella Righetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2115181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasound estimation of strain time constant and vascular permeability in tumors using a CEEMDAN and linear regression-based method. Computers in Biology and Medicine, 2022, 148, 105707.	3.9	1
2	Non-Invasive Assessment of the Spatial and Temporal Distributions of Interstitial Fluid Pressure, Fluid Velocity and Fluid Flow in Cancers <i>In Vivo</i> . IEEE Access, 2021, 9, 89222-89233.	2.6	15
3	A CNN-based method to reconstruct 3-D spine surfaces from US images in vivo. Medical Image Analysis, 2021, 74, 102221.	7.0	11
4	Estimation of Vascular Permeability in Irregularly Shaped Cancers Using Ultrasound Poroelastography. IEEE Transactions on Biomedical Engineering, 2020, 67, 1083-1096.	2.5	15
5	Modeling and Analysis of Ultrasound Elastographic Axial Strains for Spine Fracture Identification. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 898-909.	1.7	3
6	Identification of ultrasound imaging markers to quantify long bone regeneration in a segmental tibial defect sheep model in vivo. Scientific Reports, 2020, 10, 13646.	1.6	10
7	A Spline Interpolation–based Data Reconstruction Technique for Estimation of Strain Time Constant in Ultrasound Poroelastography. Ultrasonic Imaging, 2020, 42, 5-14.	1.4	1
8	Non-invasive imaging of Young's modulus and Poisson's ratio in cancers in vivo. Scientific Reports, 2020, 10, 7266.	1.6	43
9	An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications—Part I. Journal of Biomechanical Engineering, 2019, 141, .	0.6	6
10	Estimation of mechanical parameters in cancers by empirical orthogonal function analysis of poroelastography data. Computers in Biology and Medicine, 2019, 111, 103343.	3.9	5
11	Non-Invasive Imaging of Normalized Solid Stress in Cancers in Vivo. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7, 1-9.	2.2	12
12	A New Poroelastography Method to Assess the Solid Stress Distribution in Cancers. IEEE Access, 2019, 7, 103404-103415.	2.6	8
13	An analytical poroelastic model of a spherical tumor embedded in normal tissue under creep compression. Journal of Biomechanics, 2019, 89, 48-56.	0.9	18
14	A Robust Method to Estimate the Time Constant of Elastographic Parameters. IEEE Transactions on Medical Imaging, 2019, 38, 1358-1370.	5.4	5
15	An Analysis of the Error Associated to Single and Double Exponential Approximations of Theoretical Poroelastic Models. Ultrasonic Imaging, 2019, 41, 94-114.	1.4	3
16	Ultrasound shear wave elastography effectively predicts integrity of ventral hernia repair using acellular dermal matrix augmented with platelet-rich plasma (PRP). Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 2802-2811.	1.3	5
17	An Analytical Poroelastic Model of a Nonhomogeneous Medium Under Creep Compression for Ultrasound Poroelastography Applications—Part II. Journal of Biomechanical Engineering, 2019, 141, . 	0.6	5
18	Assessment of the long bone inter-fragmentary gap size in ultrasound strain elastograms. Physics in Medicine and Biology, 2019, 64, 025014.	1.6	4

RAFFAELLA RIGHETTI

#	Article	IF	CITATIONS
19	An analytical poroelastic model for ultrasound elastography imaging of tumors. Physics in Medicine and Biology, 2018, 63, 025031.	1.6	14
20	Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method. Physics in Medicine and Biology, 2018, 63, 025035.	1.6	3
21	A New Method for Estimating the Effective Poisson's Ratio in Ultrasound Poroelastography. IEEE Transactions on Medical Imaging, 2018, 37, 1178-1191.	5.4	35
22	A model-based approach to investigate the effect of elevated interstitial fluid pressure on strain elastography. Physics in Medicine and Biology, 2018, 63, 215011.	1.6	10
23	A Model-Based Approach to Investigate the Effect of a Long Bone Fracture on Ultrasound Strain Elastography. IEEE Transactions on Medical Imaging, 2018, 37, 2704-2717.	5.4	10
24	A novel filter for accurate estimation of fluid pressure and fluid velocity using poroelastography. Computers in Biology and Medicine, 2018, 101, 90-99.	3.9	6
25	Characterization of ventral incisional hernia and repair using shear wave elastography. Journal of Surgical Research, 2017, 210, 244-252.	0.8	6
26	Effect of bone-soft tissue friction on ultrasound axial shear strain elastography. Physics in Medicine and Biology, 2017, 62, 6074-6091.	1.6	11
27	Spine surface detection from local phaseâ€symmetry enhanced ridges in ultrasound images. Medical Physics, 2017, 44, 5755-5767.	1.6	10
28	Effect of Interstitial Fluid Pressure on Ultrasound Axial Strain and Axial Shear Strain Elastography. Ultrasonic Imaging, 2017, 39, 137-146.	1.4	12
29	A New Class of Phantom Materials for Poroelastography Imaging Techniques. Ultrasound in Medicine and Biology, 2016, 42, 1230-1238.	0.7	9
30	Ultrasound elastography assessment of bone/soft tissue interface. Physics in Medicine and Biology, 2016, 61, 131-150.	1.6	14
31	Effect of Temporal Acquisition Parameters on Image Quality of Strain Time Constant Elastography. Ultrasonic Imaging, 2015, 37, 87-100.	1.4	6
32	Platelet-Rich Plasma Enhances Mechanical Properties of Non-Crosslinked Acellular Dermal Matricies in Rat Model of Ventral Hernia Repair. Journal of the American College of Surgeons, 2015, 221, S76.	0.2	1
33	Effect of Permeability on the Performance of Elastographic Imaging Techniques. IEEE Transactions on Medical Imaging, 2013, 32, 189-199.	5.4	12
34	A hybrid CPU-GPGPU approach for real-time elastography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 2631-2645.	1.7	16
35	Performance Analysis of a New Real-Time Elastographic Time Constant Estimator. IEEE Transactions on Medical Imaging, 2011, 30, 497-511.	5.4	22

Fundamental image quality parameters of poroelastography. , 2011, , .

1

RAFFAELLA RIGHETTI

#	Article	IF	CITATIONS
37	Elastography: A Decade of Progress (2000-2010). Current Medical Imaging, 2011, 7, 292-312.	0.4	25
38	Elastography Using Harmonic Ultrasonic Imaging: A Feasibility Study. Ultrasonic Imaging, 2010, 32, 103-117.	1.4	21
39	Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques. Physics in Medicine and Biology, 2010, 55, 4839-4859.	1.6	22
40	The feasibility of estimating and imaging the mechanical behavior of poroelastic materials using axial strain elastography. Physics in Medicine and Biology, 2007, 52, 3241-3259.	1.6	38
41	The feasibility of using poroelastographic techniques for distinguishing between normal and lymphedematous tissues <i>in vivo</i> . Physics in Medicine and Biology, 2007, 52, 6525-6541.	1.6	62
42	Assessing image quality in effective Poisson's ratio elastography and poroelastography: I. Physics in Medicine and Biology, 2007, 52, 1303-1320.	1.6	26
43	Resolution of axial shear strain elastography. Physics in Medicine and Biology, 2006, 51, 5245-5257.	1.6	25
44	A New Method for Generating Poroelastograms in Noisy Environments. Ultrasonic Imaging, 2005, 27, 201-220.	1.4	22
45	A method for generating permeability elastograms and Poisson's ratio time-constant elastograms. Ultrasound in Medicine and Biology, 2005, 31, 803-816.	0.7	46
46	The feasibility of using elastography for imaging the Poisson's ratio in porous media. Ultrasound in Medicine and Biology, 2004, 30, 215-228.	0.7	109
47	Lateral resolution in elastography. Ultrasound in Medicine and Biology, 2003, 29, 695-704.	0.7	68
48	Elastography: Imaging the elastic properties of soft tissues with ultrasound. Journal of Medical Ultrasonics (2001), 2002, 29, 155-171.	0.6	286
49	Axial resolution in elastography. Ultrasound in Medicine and Biology, 2002, 28, 101-113.	0.7	115
50	The feasibility of elastographic visualization of HIFU-induced thermal lesions in soft tissues. Ultrasound in Medicine and Biology, 1999, 25, 641-647.	0.7	118
51	Elastographic characterization of HIFU-induced lesions in canine livers. Ultrasound in Medicine and Biology, 1999, 25, 1099-1113.	0.7	185