
Mahiuddin Baidya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2115046/publications.pdf Version: 2024-02-01

ΜΑΗΠΙΟΟΙΝ ΒΑΙΟΥΑ

#	Article	IF	CITATIONS
1	Diastereoselective access to [4,4]-carbospirocycles: governance of thermodynamic enolates with an organocatalyst in vinylogous cascade annulation. Chemical Communications, 2022, 58, 2188-2191.	4.1	4
2	Unorthodox cascade reaction of arynes and N-nitrosamides leading to indazole scaffolds. Chemical Communications, 2022, 58, 1187-1190.	4.1	4
3	Regioselective Annulation of Allenylphosphine Oxides with Aromatic Amides under Ruthenium(II) Catalysis. Organic Letters, 2022, 24, 3604-3608.	4.6	7
4	Organocatalyzed Modular Synthesis of Polycyclic Dihydropyridines and Pyridines through Sulfamate Linchpin. Chemistry - an Asian Journal, 2022, , .	3.3	3
5	Divergent Reaction of Activated Pyridines with α,α-Difluorinated <i>gem</i> -Diols: Regioselective Synthesis of <i>gem</i> -Difluorinated Dihydropyridines and Dihydropyridones. Organic Letters, 2022, 24, 4014-4018.	4.6	5
6	Efficient and recyclable palladium enriched magnetic nanocatalyst for reduction of toxic environmental pollutants. Journal of Environmental Sciences, 2021, 101, 189-204.	6.1	27
7	Regioselective C–H Alkenylation and Unsymmetrical Bis-olefination of Heteroarene Carboxylic Acids with Ruthenium Catalysis in Water. Journal of Organic Chemistry, 2021, 86, 62-73.	3.2	17
8	Ruthenium(<scp>ii</scp>)-catalyzed C–H activation and (4+2) annulation of aromatic hydroxamic acid esters with allylic amides. Chemical Communications, 2021, 57, 10536-10539.	4.1	13
9	Ruthenium(II) atalyzed Câ^'H Activation/Annulation of Aromatic Hydroxamic Acid Esters with Enamides Leading to Aminal Motifs. European Journal of Organic Chemistry, 2021, 2021, 1385-1389.	2.4	4
10	Regioselective Nitrosocarbonyl Aldol Reaction of Deconjugated Butyrolactams: Synthesis of γâ€Heterosubstituted α,βâ€Unsaturated Î3â€Lactams. Asian Journal of Organic Chemistry, 2021, 10, 1419-1423	3. ^{2.7}	1
11	Annulation Cascade of Sulfamate-Derived Cyclic Imines with Glycine Aldimino Esters: Synthesis of 1,3-Benzoxazepine Scaffolds. Organic Letters, 2021, 23, 3868-3872.	4.6	10
12	Transition Metal Catalyzed Freeâ€Amine (â^'NH ₂) Directed Câ^'H Bond Activation and Functionalization for Biaryl Frameworks. Chemical Record, 2021, 21, 3795-3817.	5.8	15
13	Ruthenium(II)-Catalyzed Regioselective C–H Olefination of Aromatic Ketones and Amides with Allyl Sulfones. Organic Letters, 2021, 23, 6855-6860.	4.6	10
14	Crossâ€Đehydrogenative Coupling/Annulation of Arene Carboxylic Acids and Alkenes in Water with Ruthenium(II) Catalyst and Air. Chemistry - an Asian Journal, 2020, 15, 4009-4013.	3.3	16
15	Ruthenium-Catalyzed Site-Selective C–H Bond Activation/Annulation Cascade toward Dibenzoazepinone Skeletons. Organic Letters, 2020, 22, 6760-6764.	4.6	30
16	Ruthenium(<scp>ii</scp>)-catalyzed amide directed spiroannulation with naphthoquinones: access to spiro-isoindolinone frameworks. Chemical Communications, 2020, 56, 13048-13051.	4.1	17
17	Copper-Catalyzed 8-Aminoquinoline-Directed Oxidative C–H/N–H Coupling for N-Arylation of Sulfoximines. Organic Letters, 2020, 22, 2606-2610.	4.6	25
18	Catalyst-Controlled Regioselective Nitrosocarbonyl Aldol Reaction of Deconjugated Butenolides. Organic Letters, 2020, 22, 1437-1441.	4.6	7

Mahiuddin Baidya

#	Article	IF	CITATIONS
19	Enhancing Ru(II)â€Catalysis with Visibleâ€Lightâ€Mediated Dyeâ€6ensitized TiO ₂ Photocatalysis for Oxidative Câ`'H Olefination of Arene Carboxylic Acids at Room Temperature. Chemistry - an Asian Journal, 2020, 15, 564-567.	3.3	18
20	Streamlined Ruthenium(II) Catalysis for One-Pot 2-fold Unsymmetrical C–H Olefination of (Hetero)Arenes. Organic Letters, 2019, 21, 5879-5883.	4.6	28
21	Organocatalyzed Annulation Cascade toward Asymmetric Functionalization of Dibenzoxazepines and Dibenzothiazepines with Vicinal Tertiary Stereogenic Centers. ChemistrySelect, 2019, 4, 8207-8211.	1.5	4
22	Atom Transfer Oxidative Radical Cascade of Aryl Alkynoates towards 1,1â€Dichalcogenide Olefins. Chemistry - an Asian Journal, 2019, 14, 4549-4552.	3.3	12
23	Nickel-Catalyzed Direct Alkenylation of Methyl Heteroarenes with Primary Alcohols. Journal of Organic Chemistry, 2019, 84, 9819-9825.	3.2	38
24	Recent Advancements in Transitionâ€Metalâ€Catalyzed Oneâ€Pot Twofold Unsymmetrical Difunctionalization of Arenes. Chemistry - an Asian Journal, 2019, 14, 4074-4086.	3.3	33
25	Vinylogous Annulation Cascade Toward Stereoselective Synthesis of Highly Functionalized Indanone Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 5472-5477.	4.3	16
26	A ruthenium-catalyzed free amine directed (5+1) annulation of anilines with olefins: diverse synthesis of phenanthridine derivatives. Chemical Communications, 2019, 55, 11908-11911.	4.1	28
27	Oxidative cross-dehydrogenative [2 + 3] annulation of α-amino ketones with α-keto esters: concise synthesis of clausenamide analogues. Organic and Biomolecular Chemistry, 2019, 17, 1740-1743.	2.8	9
28	Catalytic Regiodivergent Dearomatization Reaction of Nitrosocarbonyl Intermediates with β-Naphthols. Organic Letters, 2019, 21, 2352-2355.	4.6	9
29	Metal-free switchable <i>ortho</i> / <i>ipso</i> -cyclization of <i>N</i> -aryl alkynamides: divergent synthesis of 3-selenyl quinolin-2-ones and azaspiro[4,5]trienones. Organic and Biomolecular Chemistry, 2019, 17, 10163-10166.	2.8	36
30	A Crossâ€Dehydrogenative Annulation Strategy towards Synthesis of Polyfluorinated Phenanthridinones with Copper. Chemistry - A European Journal, 2018, 24, 3448-3454.	3.3	14
31	Synthesis of Chiral 1,2-Oxazinanes and Isoxazolidines via Nitroso Aldol Reaction of Distal Dialdehydes. Organic Letters, 2018, 20, 1023-1026.	4.6	28
32	Ru(II)-Catalyzed Oxidative <i>Heck</i> -Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C–H Bond Activation. Organic Letters, 2018, 20, 716-719.	4.6	30
33	Visible Lightâ€Induced Synthetic Approach for Selenylative Spirocyclization of <i>N</i> â€Aryl Alkynamides with Molecular Oxygen as Oxidant. Advanced Synthesis and Catalysis, 2018, 360, 1099-1103.	4.3	84
34	BrÃ,nsted Acid-promoted Facile Synthesis of <i>N</i> -Fused Angular Imidazoquinolines. Chemistry Letters, 2018, 47, 175-178.	1.3	0
35	Ru ^{II} atalyzed Annulative Coupling of Benzoic Acids with Vinyl Sulfone via Weak Carboxylateâ€Assisted Câ^'H Bond Activation. Asian Journal of Organic Chemistry, 2018, 7, 1302-1306.	2.7	16
36	Ruthenium(II) Catalysis/Noncovalent Interaction Synergy for Cross-Dehydrogenative Coupling of Arene Carboxylic Acids. ACS Catalysis, 2018, 8, 10173-10179.	11.2	50

#	Article	IF	CITATIONS
37	Directed C–H Bond Functionalization: A Unified Approach to Formal Syntheses of Amorfrutin A, Cajaninstilbene Acid, Hydrangenol, and Macrophyllol. Journal of Organic Chemistry, 2018, 83, 12327-12333.	3.2	16
38	Divergent Reactivity of <i>gem</i> -Difluoro-enolates toward Nitrogen Electrophiles: Unorthodox Nitroso Aldol Reaction for Rapid Synthesis of α-Ketoamides. Organic Letters, 2018, 20, 4610-4613.	4.6	18
39	Radical Cascade Reaction of Aryl Alkynoates at Room Temperature: Synthesis of Fully Substituted α,β-Unsaturated Acids with Chalcogen Functionality. Organic Letters, 2018, 20, 3678-3681.	4.6	38
40	Advanced Nitroso Aldol Reaction: Metal-Free Cross-Coupling of Anilines with Silyl Enol Ethers en Route to α-Amino Ketones. Organic Letters, 2017, 19, 516-519.	4.6	23
41	Copperâ€Catalyzed Chelationâ€Assisted Synthesis of Unsymmetrical Aliphatic Azo Compounds. ChemistrySelect, 2017, 2, 2029-2033.	1.5	3
42	Copper Catalyzed C–N Cross-Coupling Reaction of Aryl Boronic Acids at Room Temperature through Chelation Assistance. Journal of Organic Chemistry, 2017, 82, 2764-2771.	3.2	40
43	Ruthenium(II)-Catalyzed <i>ortho</i> -C–H Chalcogenation of Benzoic Acids via Weak O-Coordination: Synthesis of Chalcogenoxanthones. Organic Letters, 2017, 19, 2430-2433.	4.6	92
44	Ru(II)-Catalyzed C–H Functionalization on Maleimides with Electrophiles: A Demonstration of Umpolung Strategy. Organic Letters, 2017, 19, 1902-1905.	4.6	44
45	Nitrosocarbonyl–Henry and Denitration Cascade: Synthesis of α-Ketoamides and α-Keto Oximes. Organic Letters, 2017, 19, 1694-1697.	4.6	24
46	Ambident Reactivity of Nitroso Compounds for Direct Amination and Hydroxylation of Carbonyls. Synthesis, 2017, 49, 3281-3290.	2.3	16
47	Ruthenium(II)-Catalyzed Hydroarylation of Maleimides Using Carboxylic Acids as a Traceless Directing Group. Organic Letters, 2017, 19, 4138-4141.	4.6	94
48	Cross-Aldol Reaction of Activated Carbonyls with Nitrosocarbonyl Intermediates: Stereoselective Synthesis toward α-Hydroxy-β-amino Esters and Amides. Organic Letters, 2017, 19, 3843-3846.	4.6	6
49	Copperâ€Catalyzed 8â€Amido Chelationâ€Induced Remote Câ^'H Amination of Quinolines. Chemistry - A European Journal, 2016, 22, 1592-1596.	3.3	81
50	Functionalization of Quinolines through Copperâ€Catalyzed Regioselective Halogenation Reaction. ChemistrySelect, 2016, 1, 1949-1953.	1.5	30
51	Copper-mediated etherification of arenes with alkoxysilanes directed by an (2-aminophenyl)pyrazole group. RSC Advances, 2016, 6, 79361-79365.	3.6	20
52	Remote C–H Selenylation of 8â€Amidoquinolines via Copperâ€Catalyzed Radical Crossâ€Coupling. European Journal of Organic Chemistry, 2016, 2016, 4321-4327.	2.4	47
53	Copper-Catalyzed 8-Aminoquinoline-Directed Selenylation of Arene and Heteroarene C–H Bonds. Organic Letters, 2016, 18, 3202-3205.	4.6	94
54	BrÃ,nsted acid mediated N–O bond cleavage for α-amination of ketones through the aromatic nitroso aldol reaction. Chemical Communications, 2016, 52, 3215-3218.	4.1	21

Mahiuddin Baidya

#	Article	IF	CITATIONS
55	Scales of Lewis Basicities toward C-Centered Lewis Acids (Carbocations). Journal of the American Chemical Society, 2015, 137, 2580-2599.	13.7	74
56	The Mukaiyama aldol reaction of in situ generated nitrosocarbonyl compounds: selective C–N bond formation and N–O bond cleavage in one-pot for α-amination of ketones. Chemical Communications, 2015, 51, 13976-13979.	4.1	19
57	Pyrido[1,2-a]pyrimidinium ions – a novel bridgehead nitrogen heterocycles: synthesis, characterisation, and elucidation of DNA binding and cell imaging properties. Organic and Biomolecular Chemistry, 2015, 13, 8037-8047.	2.8	17
58	Platinum(II)-Catalyzed Novel Synthesis of 3,4-Fused Furans. Synthetic Communications, 2015, 45, 625-634.	2.1	4
59	Asymmetric construction of quaternary stereocenters by magnesium catalysed direct amination of β-ketoesters using in situ generated nitrosocarbonyl compounds as nitrogen sources. Chemical Science, 2014, 5, 3941-3945.	7.4	40
60	Nucleophilic Reactivities and Lewis Basicities of 2â€Imidazolines and Related Nâ€Heterocyclic Compounds. European Journal of Organic Chemistry, 2013, 2013, 3369-3377.	2.4	15
61	Advancements in the Nascent Nitroso-Ene Reaction. Synthesis, 2013, 45, 1931-1938.	2.3	53
62	Kinetics and mechanism of organocatalytic aza-Michael additions: direct observation of enamine intermediates. Chemical Communications, 2012, 48, 4504.	4.1	15
63	Catalytic Enantioselective <i>O</i> -Nitrosocarbonyl Aldol Reaction of β-Dicarbonyl Compounds. Journal of the American Chemical Society, 2012, 134, 18566-18569.	13.7	93
64	Metal Nitrite: A Powerful Oxidizing Reagent. Journal of the American Chemical Society, 2011, 133, 13880-13882.	13.7	44
65	S _N 2' versus S _N 2 Reactivity: Control of Regioselectivity in Conversions of Baylis–Hillman Adducts. Chemistry - A European Journal, 2010, 16, 1365-1371.	3.3	55
66	Nucleophilic reactivities of tertiary alkylamines. Journal of Physical Organic Chemistry, 2010, 23, 1029-1035.	1.9	65
67	Nucleophilicity and Nucleofugality of Phenylsulfinate (PhSO ₂ ^{â^'}): A Key to Understanding its Ambident Reactivity. Journal of the American Chemical Society, 2010, 132, 4796-4805.	13.7	67
68	Nucleophilicities and Lewis basicities of imidazoles, benzimidazoles, and benzotriazoles. Organic and Biomolecular Chemistry, 2010, 8, 1929.	2.8	63
69	Organocatalytic Activity of Cinchona Alkaloids: Which Nitrogen Is More Nucleophilic?. Journal of Organic Chemistry, 2009, 74, 7157-7164.	3.2	39
70	4,4′-Bis(dimethylamino)benzhydryl phenyl sulfone. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3035-o3035.	0.2	2
71	Benzhydryl phenyl sulfone. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o3224-o3224.	0.2	2
72	DABCO and DMAP—Why Are They Different in Organocatalysis?. Angewandte Chemie - International Edition, 2007, 46, 6176-6179.	13.8	108

#	Article	IF	CITATIONS
73	Facile Synthesis, Fluorescence, and Photochromism of Novel Helical Pyrones and Chromenes. Organic Letters, 2006, 8, 4891-4894.	4.6	51
74	Ascending of Cycloaddition Strategy for N-O Heterocycles. Synthesis, 0, 0, .	2.3	2