## Taro Uematsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2114753/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Surface ligand chemistry on quaternary<br>Ag(In <sub><i>x</i></sub> Ga <sub>1â<sup>^,</sup><i>x</i></sub> )S <sub>2</sub> semiconductor quantum dots for<br>improving photoluminescence properties. Nanoscale Advances, 2022, 4, 849-857.                                                   | 4.6 | 20        |
| 2  | Encapsulation of AgInS <sub>2</sub> /GaS <sub><i>x</i></sub> core/shell quantum dots in In-fumarate metal–organic frameworks for stability enhancement. CrystEngComm, 2022, 24, 3715-3723.                                                                                                  | 2.6 | 4         |
| 3  | Recent Progress of Multinary Semiconductor Quantum Dots Towards Luminescent and<br>Photoelectrochemical Applications. Denki Kagaku, 2022, 90, 115-121.                                                                                                                                      | 0.0 | 0         |
| 4  | Synthesis of multicolor-emitting nitrogen–sulfur co-doped carbon dots and their photochemical studies for sensing applications. RSC Advances, 2022, 12, 20054-20061.                                                                                                                        | 3.6 | 4         |
| 5  | (Invited, Digital Presentation) Controlling the Energy Structure of Ag(In,Ga)S Quantum Dots for<br>Photocatalytic H <sub>2</sub> Evolution. ECS Meeting Abstracts, 2022, MA2022-01, 1576-1576.                                                                                              | 0.0 | 0         |
| 6  | Controlling Electronic Energy Structure of Near-IR-Responsive Ag(In,Ga)(S,Se) <sub>2</sub> Quantum<br>Dots for In Vivo Bioimaging. ECS Meeting Abstracts, 2022, MA2022-01, 935-935.                                                                                                         | 0.0 | 0         |
| 7  | Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding<br>Semiconductor Quantum Dots. Chemistry of Materials, 2021, 33, 1607-1617.                                                                                                                       | 6.7 | 24        |
| 8  | [Paper] Green Electroluminescence Generated by Band-edge Transition in<br>Ag-In-Ga-S/GaS <sub><i>x</i></sub> Core/shell Quantum Dots. ITE Transactions on<br>Media Technology and Applications, 2021, 9, 222-227.                                                                           | 0.5 | 5         |
| 9  | Photoluminescence properties of quinary Ag–(In,Ga)–(S,Se) quantum dots with a gradient alloy<br>structure for <i>in vivo</i> bioimaging. Journal of Materials Chemistry C, 2021, 9, 12791-12801.                                                                                            | 5.5 | 18        |
| 10 | Variations in Photoluminescence Intensity of a Quantum Dot Assembly Investigated by Its Adsorption<br>on Cubic Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 8285-8293.                                                                                             | 3.1 | 4         |
| 11 | Luminescent Quaternary<br>Ag(In <sub><i>x</i></sub> Ga <sub>1–<i>x</i></sub> )S <sub>2</sub> /GaS <sub><i>y</i></sub> Core/Shell<br>Quantum Dots Prepared Using Dithiocarbamate Compounds and Photoluminescence Recovery via Post<br>Treatment, Inorganic Chemistry, 2021, 60, 13101-13109. | 4.0 | 30        |
| 12 | Photoluminescence Stability Enhancement of Ag–In–Ga–S/GaS <sub>x</sub> Core/Shell Quantum Dots with Thicker Shells by the Addition of Gallium Diethyldithiocarbamate. Chemistry Letters, 2021, 50, 1863-1866.                                                                               | 1.3 | 12        |
| 13 | Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Applied Physics<br>Letters, 2020, 117, .                                                                                                                                                                   | 3.3 | 26        |
| 14 | Efficient quantum-dot light-emitting diodes using ZnS–AgInS2 solid-solution quantum dots in combination with organic charge-transport materials. Applied Physics Letters, 2020, 116, .                                                                                                      | 3.3 | 14        |
| 15 | Tailored Photoluminescence Properties of Ag(In,Ga)Se <sub>2</sub> Quantum Dots for Near-Infrared<br><i>In Vivo</i> Imaging. ACS Applied Nano Materials, 2020, 3, 3275-3287.                                                                                                                 | 5.0 | 32        |
| 16 | Temperature dependences of photoluminescence intensities observed from AgInGaS and AgInGaS/GaSx core–shell nanoparticles. Journal of Nanophotonics, 2020, 14, 1.                                                                                                                            | 1.0 | 1         |
| 17 | Fabrication and Evaluation of Electroluminescence Devices Using Quantum Dots As Light Emitting Materials. ECS Meeting Abstracts, 2020, MA2020-02, 3638-3638.                                                                                                                                | 0.0 | 0         |
| 18 | Fabrication of Quantum Dots@Metal–Organic Frameworks Nanocomposites By Direct Surface<br>Modification. ECS Meeting Abstracts, 2020, MA2020-02, 2726-2726.                                                                                                                                   | 0.0 | 0         |

Taro Uematsu

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Embedding Quantum Dots with High Quantum Yield in Inorganic Matrix By Sol-Gel Method. ECS<br>Meeting Abstracts, 2020, MA2020-02, 3639-3639.                                                                      | 0.0  | 0         |
| 20 | Narrow-Band Photoluminescence from Cadmium-Free I-III-VI Ternary Semiconductor Quantum Dots By Surface Modification. ECS Meeting Abstracts, 2020, MA2020-02, 2727-2727.                                          | 0.0  | 0         |
| 21 | Controlling Electronic Energy Structure of Ag–î™n–Ga–S–Se Quantum Dots Showing Band-Edge<br>Emission. ECS Meeting Abstracts, 2020, MA2020-02, 3121-3121.                                                         | 0.0  | 0         |
| 22 | (Keynote) Band-Edge Emission from AgInS <sub>2</sub> /Ga <sub>2</sub> S <sub>3</sub> Core/Shell<br>Quantum Dots and Enhancement of Their Quantum Yield. ECS Meeting Abstracts, 2020, MA2020-02,<br>3076-3076.    | 0.0  | 0         |
| 23 | Direct surface modification of semiconductor quantum dots with metal–organic frameworks.<br>CrystEngComm, 2019, 21, 5568-5577.                                                                                   | 2.6  | 21        |
| 24 | The Capacitor Properties of KOH Activated Porous Carbon Beads Derived from Polyacrylonitrile.<br>Bulletin of the Chemical Society of Japan, 2019, 92, 832-839.                                                   | 3.2  | 4         |
| 25 | Electric Double Layer Capacitors Based on Polyacrylonitrile-derived Porous Carbon Beads: Effects of<br>Particle Size and Composite. Electrochemistry, 2019, 87, 119-122.                                         | 1.4  | 2         |
| 26 | Core Nanoparticle Engineering for Narrower and More Intense Band-Edge Emission from AgInS2/GaSx<br>Core/Shell Quantum Dots. Nanomaterials, 2019, 9, 1763.                                                        | 4.1  | 21        |
| 27 | Operando Observation of Vacuum and Liquid Interface while Conducting Gold Sputtering onto Ionic<br>Liquid for Preparation of Au Nanoparticles. Electrochemistry, 2018, 86, 223-225.                              | 1.4  | 5         |
| 28 | Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via<br>Ga <sup>3+</sup> Doping. ACS Applied Materials & Interfaces, 2018, 10, 42844-42855.                             | 8.0  | 55        |
| 29 | Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous Ill–VI semiconductor shells. NPG Asia Materials, 2018, 10, 713-726.                                     | 7.9  | 91        |
| 30 | Enhanced visible light response of a WO <sub>3</sub> photoelectrode with an immobilized fibrous gold nanoparticle assembly using an amyloid-l² peptide. RSC Advances, 2017, 7, 1089-1092.                        | 3.6  | 2         |
| 31 | Improvement of Optical Properties for Semiconductor Nanoparticles by the Precise Control of Electron and Energy Transfer. Electrochemistry, 2017, 85, 543-551.                                                   | 1.4  | 3         |
| 32 | Evaluation of Surface Ligands on Semiconductor Nanoparticle Surfaces Using Electron Transfer to Redox Species. Journal of Physical Chemistry C, 2016, 120, 16012-16023.                                          | 3.1  | 11        |
| 33 | Controlling Shape Anisotropy of ZnS–AgInS <sub>2</sub> Solid Solution Nanoparticles for Improving<br>Photocatalytic Activity. ACS Applied Materials & Interfaces, 2016, 8, 27151-27161.                          | 8.0  | 53        |
| 34 | Photocatalytic Properties of TiO <sub>2</sub> Composites Immobilized with Gold Nanoparticle<br>Assemblies Using the Streptavidin–Biotin Interaction. Langmuir, 2016, 32, 6459-6467.                              | 3.5  | 14        |
| 35 | Mannose-displaying fluorescent framboidal nanoparticles containing phenylboronic acid groups as a potential drug carrier for macrophage targeting. Colloids and Surfaces B: Biointerfaces, 2015, 136, 1174-1181. | 5.0  | 9         |
| 36 | Atomic Resolution Imaging of Gold Nanoparticle Generation and Growth in Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 13789-13797.                                                         | 13.7 | 61        |

Taro Uematsu

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Visualization of Electrochemical Reactions by Redox-dependent Quenching of Photoluminescence<br>from ZnS-AgInS2 Solid Solution Semiconductor Nanoparticles. Electrochemistry, 2014, 82, 338-340.                                            | 1.4 | 2         |
| 38 | Colloidal Syntheses of Semiconductor Nanoparticles with Tunable Photoluminescence in Visible-Light<br>Region and Their Application to Photo-functional Materials. Journal of the Japan Society of Colour<br>Material, 2014, 87, 430-435.    | 0.1 | 0         |
| 39 | Photoinduced Electron Transfer of ZnS–AgInS2 Solid-Solution Semiconductor Nanoparticles:<br>Emission Quenching and Photocatalytic Reactions Controlled by Electrostatic Forces. Journal of<br>Physical Chemistry C, 2013, 117, 15667-15676. | 3.1 | 18        |
| 40 | Supramolecular Linear Assemblies of Cytochrome b 562 Immobilized on a Gold Electrode. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 172-179.                                                                    | 3.7 | 9         |
| 41 | Shape-controlled Synthesis of ZnS–CuInS2–AgInS2 Solid Solution Nanoparticles and Their<br>Photoluminescence Properties. Chemistry Letters, 2013, 42, 171-173.                                                                               | 1.3 | 3         |
| 42 | Preparation of gold nanoparticles using reactive species produced in room-temperature ionic liquids by accelerated electron beam irradiation. RSC Advances, 2012, 2, 11801.                                                                 | 3.6 | 15        |
| 43 | Long Term Optical Properties of ZnS-AgInS2 and AgInS2-AgGaS2 Solid-Solution Semiconductor Nanoparticles Dispersed in Polymer Matrices. Electrochemistry, 2011, 79, 813-816.                                                                 | 1.4 | 6         |
| 44 | Preparation of Luminescent AgInS <sub>2</sub> â^'AgGaS <sub>2</sub> Solid Solution Nanoparticles and<br>Their Optical Properties. Journal of Physical Chemistry Letters, 2010, 1, 3283-3287.                                                | 4.6 | 75        |
| 45 | Emission quench of water-soluble ZnS–AgInS2 solid solution nanocrystals and its application to chemosensors. Chemical Communications, 2009, , 7485.                                                                                         | 4.1 | 42        |
| 46 | In Situ Surface Plasmon Resonance Measurements of Self-assembled Monolayers of<br>Ferrocenylalkylthiols under Constant Potentials. Analytical Sciences, 2008, 24, 307-312.                                                                  | 1.6 | 5         |