Mohammad Anwar Hossain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2114711/publications.pdf

Version: 2024-02-01

67 4,883 23 34
papers citations h-index g-index

76 76 76 4713
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Breeding Potential of Some Exotic Tomato Lines: A Combined Study of Morphological Variability, Genetic Divergence, and Association of Traits. Phyton, 2022, 91, 97-114.	0.4	8
2	Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS ONE, 2022, 17, e0262099.	1.1	24
3	Evaluation of rice (<i>Oryza sativa</i> L.) genotypes grown under combined salinity and submergence stresses based on vegetative stage phenotyping. Acta Biologica Szegediensis, 2022, 2, 145-162.	0.7	0
4	Screening of Salt-Tolerant Rice Landraces by Seedling Stage Phenotyping and Dissecting Biochemical Determinants of Tolerance Mechanism. Journal of Plant Growth Regulation, 2021, 40, 1853-1868.	2.8	56
5	Phenotypic and Molecular Assessment of Wheat Genotypes Tolerant to Leaf Blight, Rust and Blast Diseases. Phyton, 2021, 90, 1301-1320.	0.4	3
6	Laboratory-and Field-Phenotyping for Drought Stress Tolerance and Diversity Study in Lentil (Lens) Tj ETQq0 0 0	rgBT/Ove	rlogk 10 Tf 50
7	Combining ability and heterosis analyses for oil and healthy fatty acid composition in groundnut (Arachis hypogaea L.). Plant Science Today, 2021, 8, .	0.4	0
8	Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Frontiers in Agronomy, 2021, 3, .	1.5	117
9	Arsenic Accumulation in Rice Grain as Influenced by Water Management: Human Health Risk Assessment. Agronomy, 2021, 11, 1741.	1.3	9
10	Legumes under Drought Stress: Plant Responses, Adaptive Mechanisms, and Management Strategies in Relation to Nitrogen Fixation. , 2021 , , $179-207$.		13
11	Mineralization of Farm Manures and Slurries under Aerobic and Anaerobic Conditions for Subsequent Release of Phosphorus and Sulphur in Soil. Sustainability, 2021, 13, 8605.	1.6	10
12	Leaf Proteome Response to Drought Stress and Antioxidant Potential in Tomato (Solanum) Tj ETQq0 0 0 rgBT /C	verlock 10	O Tf 50 302 To
13	Lime and Organic Manure Amendment Enhances Crop Productivity of Wheat–Mungbean–T. Aman Cropping Pattern in Acidic Piedmont Soils. Agronomy, 2021, 11, 1595.	1.3	14
14	Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils. Sustainability, 2021, 13, 9808.	1.6	6
15	Mineralization of Farm Manures and Slurries for Successive Release of Carbon and Nitrogen in Incubated Soils Varying in Moisture Status under Controlled Laboratory Conditions. Agriculture (Switzerland), 2021, 11, 846.	1.4	10
16	Morphological variability and genetic diversity of Aman rice germplasm of Bangladesh cultivated in Mymensingh region. Plant Science Today, 2021, 8, .	0.4	1
17	Exogenous Glutathione-Mediated Drought Stress Tolerance in Rice (Oryza sativa L.) is Associated with Lower Oxidative Damage and Favorable Ionic Homeostasis. Iranian Journal of Science and Technology, Transaction A: Science, 2020, 44, 955-971.	0.7	39
18	Salicylic Acid-Mediated Salt Stress Tolerance in Plants. , 2020, , 1-38.		5

#	Article	IF	Citations
19	The Effect of Exposure to a Combination of Stressors on Rice Productivity and Grain Yields., 2020,, 675-727.		O
20	Genome-wide identification and characterization of the metal tolerance protein (MTP) family in grape (Vitis vinifera L.). 3 Biotech, 2019, 9, 199.	1.1	28
21	The Glyoxalase System: A Possible Target for Production of Salinity-Tolerant Crop Plants. , 2018, , 257-281.		4
22	Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma, 2018, 255, 399-412.	1.0	141
23	Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere, 2017, 178, 212-223.	4.2	116
24	Exogenous Glutathione Modulates Salinity Tolerance of Soybean [Glycine max (L.) Merrill] at Reproductive Stage. Journal of Plant Growth Regulation, 2017, 36, 877-888.	2.8	69
25	Glycinebetaine-Mediated Abiotic Oxidative-Stress Tolerance in Plants: Physiological and Biochemical Mechanisms., 2017,, 111-133.		24
26	Glutathione in Plant Growth, Development, and Stress Tolerance., 2017,,.		22
27	Transgenic Plants Over-expressing Glutathione Biosynthetic Genes and Abiotic Stress Tolerance. , 2017, , 397-412.		2
28	Exogenous Glutathione-Mediated Abiotic Stress Tolerance in Plants. , 2017, , 171-194.		9
29	Genetic Strategies forÂAdvancing Phytoremediation Potential in Plants. , 2016, , 431-454.		11
30	Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance. Frontiers in Plant Science, 2016, 7, 1341.	1.7	185
31	Transgenic Approaches for Abiotic Stress Tolerance in Crop Plants. , 2016, , 345-396.		21
32	Drought Stress Tolerance in Plants, Vol 1., 2016, , .		23
33	Transgenic Plants for Higher Antioxidant Content and Drought Stress Tolerance. , 2016, , 473-511.		1
34	Drought Stress Tolerance in Plants, Vol 2. , 2016, , .		28
35	Heavy Metal Stress. , 2016, , 557-583.		18
36	Genetic Variability and Traits Association Analysis of Tomato (Lycopersicon esculentum L.) Genotypes for Yield and Quality Attributes. Universal Journal of Plant Science, 2016, 4, 23-34.	0.3	3

#	Article	IF	Citations
37	Morphological Characterization of Deepwater Rice Genotypes. Agriculture and Food Sciences Research, 2016, 3, 59-65.	0.1	O
38	Molecular Breeding for Salt Stress Tolerance in Plants. , 2015, , 306-333.		11
39	Jacks of metal/metalloid chelation trade in plantsââ,¬â€an overview. Frontiers in Plant Science, 2015, 6, 192.	1.7	148
40	Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science, 2015, 6, 420.	1.7	552
41	Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Scientific Reports, 2015, 5, 11433.	1.6	141
42	Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma, 2015, 252, 461-475.	1.0	134
43	Plant–Microbe Interaction and Salt Stress Tolerance in Plants. , 2015, , 282-305.		4
44	Proline Protects Plants Against Abiotic Oxidative Stress. , 2014, , 477-522.		89
45	Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica) Tj ETQq1	1 0.78431 	.4 rggT/Overlo
46	Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. Journal of Botany, 2012, 2012, 1-37.	1.2	560
47	Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor., 2012,, 261-315.		378
48	Exogenous Selenium Pretreatment Protects Rapeseed Seedlings from Cadmium-Induced Oxidative Stress by Upregulating Antioxidant Defense and Methylglyoxal Detoxification Systems. Biological Trace Element Research, 2012, 149, 248-261.	1.9	215
49	Glyoxalase System and Reactive Oxygen Species Detoxification System in Plant Abiotic Stress Response and Tolerance: An Intimate Relationship. , $2011, , .$		6
50	Selenium-Induced Up-Regulation of the Antioxidant Defense and Methylglyoxal Detoxification System Reduces Salinity-Induced Damage in Rapeseed Seedlings. Biological Trace Element Research, 2011, 143, 1704-1721.	1.9	252
51	Coordinate induction of antioxidant defense and glyoxalase system by exogenous proline and glycinebetaine is correlated with salt tolerance in mung bean. Frontiers of Agriculture in China, 2011, 5, 1-14.	0.2	84
52	Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports, 2011, 5, 353-365.	0.9	366
53	Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiology and Molecular Biology of Plants, 2010, 16, 19-29.	1.4	133
54	Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 2010, 16, 259-272.	1.4	327

#	Article	IF	Citations
55	Physiological and Biochemical Mechanisms of Nitric Oxide Induced Abiotic Stress Tolerance in Plants. American Journal of Plant Physiology, 2010, 5, 295-324.	0.2	81
56	Selenium in Higher Plants: Physiological Role, Antioxidant Metabolism and Abiotic Stress Tolerance. Journal of Plant Sciences, 2010, 5, 354-375.	0.2	135
57	Purification of Glyoxalase I from Onion Bulbs and Molecular Cloning of Its cDNA. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2007-2013.	0.6	67
58	Salinity Tolerance in Canola: Insights from Proteomic Studies. , 0, , .		3
59	Phenotyping of mungbean (Vigna radiata L.) genotypes against salt stress and assessment of variability for yield and yield attributing traits. Journal of Plant Stress Physiology, 0, , 7-17.	0.1	5
60	Cross Protection by Cold-shock to Salinity and Drought Stress-induced Oxidative Stress in Mustard (<i>Brassica campestris</i> L.) Seedlings. Molecular Plant Breeding, 0, , .	0.0	20
61	Hydrogen Peroxide Priming Stimulates Drought Tolerance in Mustard (<i>Brassica) Tj ETQq1 1 0.784314 rg</i>	gBT/Overlo	ock 10 Tf 50 5
62	Exogenous Glutathione Improves Salinity Stress Tolerance in Rice (<i>Oryza sativa</i> L.). Plant Gene & Trait, 0, , .	0.0	5
63	Genetic Variability and Association Analysis of Soybean (<i>Glycine max</i> (L.) Merrill) for Yield and Yield Attributing Traits. Plant Gene & Trait, 0, , .	0.0	4
64	Variability for agromorphological traits, genetic parameters, correlation and path coefficient analyses in Lentil (Lens culinaris Medik.). Research in Plant Biology, 0, , 1-7.	0.0	3
65	Potential determinants of salinity tolerance in rice (Oryza sativa L.) and modulation of tolerance by exogenous ascorbic acid application. Journal of Phytology, 0, , 86-98.	0.3	2
66	Vertical distribution of soil nutrients under different land use systems in Bangladesh. Journal of Aridland Agriculture, 0, , 6-12.	0.0	1
67	Application of moringa leaf extract improves growth and yield of Tomato (Solanum lycopersicum) and Indian Spinach (Basella alba). Plant Science Today, 0, , .	0.4	3