List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2114471/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | WNT1-inducible signaling protein–1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. Journal of Clinical Investigation, 2009, 119, 772-87.                                                  | 8.2  | 447       |
| 2  | Functional Wnt Signaling Is Increased in Idiopathic Pulmonary Fibrosis. PLoS ONE, 2008, 3, e2142.                                                                                                                                              | 2.5  | 429       |
| 3  | Alveolar regeneration through a Krt8+ transitional stem cell state that persists in human lung<br>fibrosis. Nature Communications, 2020, 11, 3559.                                                                                             | 12.8 | 378       |
| 4  | Shared and distinct mechanisms of fibrosis. Nature Reviews Rheumatology, 2019, 15, 705-730.                                                                                                                                                    | 8.0  | 331       |
| 5  | An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical<br>Assessment of Potential Therapies for Pulmonary Fibrosis. American Journal of Respiratory Cell and<br>Molecular Biology, 2017, 56, 667-679. | 2.9  | 267       |
| 6  | Senolytic drugs targetÂalveolar epithelial cell function and attenuate experimental lung fibrosis <i>ex<br/>vivo</i> . European Respiratory Journal, 2017, 50, 1602367.                                                                        | 6.7  | 267       |
| 7  | Hallmarks of the ageing lung. European Respiratory Journal, 2015, 45, 807-827.                                                                                                                                                                 | 6.7  | 264       |
| 8  | Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. Journal of Clinical Investigation, 2009, 119, 2550-63.                                                                | 8.2  | 251       |
| 9  | WNT Signaling in Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 21-31.                                                                                                                                    | 2.9  | 243       |
| 10 | Protease-Mediated Release of Chemotherapeutics from Mesoporous Silica Nanoparticles to <i>ex<br/>Vivo</i> Human and Mouse Lung Tumors. ACS Nano, 2015, 9, 2377-2389.                                                                           | 14.6 | 165       |
| 11 | Activation of the WNT/β-Catenin Pathway Attenuates Experimental Emphysema. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 723-733.                                                                                     | 5.6  | 162       |
| 12 | WNT/β-Catenin Signaling Induces IL-1β Expression by Alveolar Epithelial Cells in Pulmonary Fibrosis.<br>American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 96-104.                                                          | 2.9  | 150       |
| 13 | An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L896-L902.                                                   | 2.9  | 144       |
| 14 | The WNT signaling pathway from ligand secretion to gene transcription: Molecular mechanisms and pharmacological targets. , 2013, 138, 66-83.                                                                                                   |      | 142       |
| 15 | Extracellularâ€Matrixâ€Reinforced Bioinks for 3D Bioprinting Human Tissue. Advanced Materials, 2021, 33,<br>e2005476.                                                                                                                          | 21.0 | 142       |
| 16 | <i>â€~WNT-er is coming'</i> : WNT signalling in chronic lung diseases. Thorax, 2017, 72, 746-759.                                                                                                                                              | 5.6  | 135       |
| 17 | The WNT signaling pathways in wound healing and fibrosis. Matrix Biology, 2018, 68-69, 67-80.                                                                                                                                                  | 3.6  | 133       |
| 18 | Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. European<br>Respiratory Journal, 2015, 46, 1150-1166.                                                                                               | 6.7  | 132       |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Lung ageing and COPD: is there a role for ageing in abnormal tissue repair?. European Respiratory<br>Review, 2017, 26, 170073.                                                                                                               | 7.1  | 130       |
| 20 | Increased Extracellular Vesicles Mediate WNT5A Signaling in Idiopathic Pulmonary Fibrosis. American<br>Journal of Respiratory and Critical Care Medicine, 2018, 198, 1527-1538.                                                              | 5.6  | 127       |
| 21 | Loss of RAGE in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 337-345.                                                                                                                           | 2.9  | 122       |
| 22 | Noncanonical WNT-5A signaling impairs endogenous lung repair in COPD. Journal of Experimental<br>Medicine, 2017, 214, 143-163.                                                                                                               | 8.5  | 122       |
| 23 | Transgelin is a direct target of TGFâ€Î²/Smad3â€dependent epithelial cell migration in lung fibrosis. FASEB<br>Journal, 2008, 22, 1778-1789.                                                                                                 | 0.5  | 121       |
| 24 | Cancer cells induce interleukin-22 production from memory CD4 <sup>+</sup> T cells via interleukin-1<br>to promote tumor growth. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, 12994-12999. | 7.1  | 115       |
| 25 | Pulmonary Epithelium Is a Prominent Source of Proteinase-activated Receptor-1–inducible CCL2 in<br>Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 414-425.                                       | 5.6  | 111       |
| 26 | Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells. American Journal<br>of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L895-L907.                                                       | 2.9  | 103       |
| 27 | Exosome Isolation by Ultracentrifugation and Precipitation and Techniques for Downstream Analyses.<br>Current Protocols in Cell Biology, 2020, 88, e110.                                                                                     | 2.3  | 100       |
| 28 | WNT1 inducible signaling pathway protein 1 (WISP1): A novel mediator linking development and disease.<br>International Journal of Biochemistry and Cell Biology, 2011, 43, 306-309.                                                          | 2.8  | 95        |
| 29 | miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis. International Journal of<br>Biochemistry and Cell Biology, 2014, 53, 432-441.                                                                                       | 2.8  | 95        |
| 30 | Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo<br>murine and human lung tissue cultures of pulmonary fibrosis. Respiratory Research, 2018, 19, 175.                                 | 3.6  | 90        |
| 31 | Reduced Frizzled Receptor 4 Expression Prevents WNT/β-Catenin–driven Alveolar Lung Repair in<br>Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine,<br>2017, 196, 172-185.                    | 5.6  | 85        |
| 32 | The Angiotensin II Receptor 2 Is Expressed and Mediates Angiotensin II Signaling in Lung Fibrosis.<br>American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 640-650.                                                         | 2.9  | 82        |
| 33 | Inhibition of LTβR signalling activates WNT-induced regeneration in lung. Nature, 2020, 588, 151-156.                                                                                                                                        | 27.8 | 81        |
| 34 | Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and<br>Drug Discovery. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 681-691.                                          | 2.9  | 79        |
| 35 | Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells. Cellular<br>Signalling, 2020, 70, 109588.                                                                                                              | 3.6  | 68        |
| 36 | HER-2/neu Gene Copy Number Quantified by Real-Time PCR: Comparison of Gene Amplification,<br>Heterozygosity, and Immunohistochemical Status in Breast Cancer Tissue. Clinical Chemistry, 2003, 49,<br>219-229                                | 3.2  | 66        |

| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax, 2010, 65, 949-955.                                                 | 5.6  | 66        |
| 38 | Thrombin Impairs Alveolar Fluid Clearance by Promoting Endocytosis of Na+,K+-ATPase. American<br>Journal of Respiratory Cell and Molecular Biology, 2005, 33, 343-354.                                           | 2.9  | 64        |
| 39 | Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation. EBioMedicine, 2018, 36, 461-474.                                                                       | 6.1  | 64        |
| 40 | S100a4 Is Secreted by Alternatively Activated Alveolar Macrophages and Promotes Activation of Lung<br>Fibroblasts in Pulmonary Fibrosis. Frontiers in Immunology, 2018, 9, 1216.                                 | 4.8  | 64        |
| 41 | The Role of Dimethylarginine Dimethylaminohydrolase in Idiopathic Pulmonary Fibrosis. Science<br>Translational Medicine, 2011, 03, 87ra53.                                                                       | 12.4 | 59        |
| 42 | TGFâ€Î²â€induced profibrotic signaling is regulated in part by the WNT receptor Frizzledâ€8. FASEB Journal,<br>2016, 30, 1823-1835.                                                                              | 0.5  | 56        |
| 43 | Endogenous Lung Regeneration. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1213-1219.                                                                                                  | 5.6  | 54        |
| 44 | Enolase 1 and protein disulfide isomerase associated 3 regulate Wnt/β-catenin driven alveolar epithelial cell trans-differentiation. DMM Disease Models and Mechanisms, 2015, 8, 877-90.                         | 2.4  | 53        |
| 45 | TGF-β activation impairs fibroblast ability to support adult lung epithelial progenitor cell organoid<br>formation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L14-L28. | 2.9  | 53        |
| 46 | Hyperoxia Injury in the Developing Lung Is Mediated by Mesenchymal Expression of Wnt5A. American<br>Journal of Respiratory and Critical Care Medicine, 2020, 201, 1249-1262.                                     | 5.6  | 52        |
| 47 | WNT Signaling in Lung Aging and Disease. Annals of the American Thoracic Society, 2016, 13, S411-S416.                                                                                                           | 3.2  | 50        |
| 48 | Syndecan-1 promotes lung fibrosis by regulating epithelial reprogramming through extracellular vesicles. JCI Insight, 2019, 4, .                                                                                 | 5.0  | 50        |
| 49 | Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells, 2019, 8, 1147.                                                                                                            | 4.1  | 49        |
| 50 | Membrane-anchored Serine Protease Matriptase Is a Trigger of Pulmonary Fibrogenesis. American<br>Journal of Respiratory and Critical Care Medicine, 2016, 193, 847-860.                                          | 5.6  | 47        |
| 51 | Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity. Respiration, 2011, 81, 353-358.                                                                                                          | 2.6  | 46        |
| 52 | Wnt/β-catenin signaling is critical for regenerative potential of distal lung epithelial progenitor cells in homeostasis and emphysema. Stem Cells, 2020, 38, 1467-1478.                                         | 3.2  | 46        |
| 53 | WNT receptor signalling in lung physiology and pathology. , 2018, 187, 150-166.                                                                                                                                  |      | 44        |
| 54 | Impairment of Immunoproteasome Function by Cigarette Smoke and in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1230-1241.                       | 5.6  | 42        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Embedding of Precision-Cut Lung Slices in Engineered Hydrogel Biomaterials Supports Extended <i>Ex<br/>Vivo</i> Culture. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 14-22.                    | 2.9  | 42        |
| 56 | The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nature Communications, 2022, 13, 1303.                                                                      | 12.8 | 42        |
| 57 | Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling.<br>Molecular and Cellular Pediatrics, 2016, 3, 34.                                                                             | 1.8  | 39        |
| 58 | Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis. Scientific Reports, 2018, 8, 12983.                                                     | 3.3  | 38        |
| 59 | miR-323a-3p regulates lung fibrosis by targeting multiple profibrotic pathways. JCI Insight, 2016, 1, e90301.                                                                                                            | 5.0  | 37        |
| 60 | Lung volumes predict survival in patients with chronic lung allograft dysfunction. European<br>Respiratory Journal, 2017, 49, 1601315.                                                                                   | 6.7  | 35        |
| 61 | Of flies, mice and men: a systematic approach to understanding the early life origins of chronic lung disease. Thorax, 2013, 68, 380-384.                                                                                | 5.6  | 34        |
| 62 | Plasminogen activator inhibitor type 1 inhibits smooth muscle cell proliferation in pulmonary arterial hypertension. International Journal of Biochemistry and Cell Biology, 2008, 40, 1872-1882.                        | 2.8  | 33        |
| 63 | Noncanonical Wnt planar cell polarity signaling in lung development and disease. Biochemical Society Transactions, 2020, 48, 231-243.                                                                                    | 3.4  | 33        |
| 64 | Heterozygous <i>Vangl2 Looptail</i> mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair. DMM Disease Models and Mechanisms, 2017, 10, 409-423.                             | 2.4  | 31        |
| 65 | No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Particle and Fibre Toxicology, 2015, 13, 33.                                                    | 6.2  | 30        |
| 66 | Age dictates a steroid-resistant cascade of Wnt5a, transglutaminase 2, and leukotrienes in inflamed airways. Journal of Allergy and Clinical Immunology, 2017, 139, 1343-1354.e6.                                        | 2.9  | 29        |
| 67 | Precision 3Dâ€Printed Cell Scaffolds Mimicking Native Tissue Composition and Mechanics. Advanced Healthcare Materials, 2020, 9, e2000918.                                                                                | 7.6  | 29        |
| 68 | Cellâ€specific expression of runtâ€related transcription factor 2 contributes to pulmonary fibrosis.<br>FASEB Journal, 2018, 32, 703-716.                                                                                | 0.5  | 28        |
| 69 | Distinct niches within the extracellular matrix dictate fibroblast function in (cell free) 3D lung<br>tissue cultures. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314,<br>L708-L723. | 2.9  | 28        |
| 70 | Paired Immunoglobulin-Like Receptor–B Inhibits Pulmonary Fibrosis by Suppressing Profibrogenic<br>Properties of Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology,<br>2013, 48, 456-464.  | 2.9  | 27        |
| 71 | Considerations for Targeting β-Catenin Signaling in Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 566-568.                                                                            | 5.6  | 26        |
| 72 | Pulmonary CCR2 <sup>+</sup> CD4 <sup>+</sup> T cells are immune regulatory and attenuate lung fibrosis development. Thorax, 2017, 72, 1007-1020.                                                                         | 5.6  | 26        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Role of von Hippelâ€Lindau protein in fibroblast proliferation and fibrosis. FASEB Journal, 2011, 25, 3032-3044.                                                                                                                                                  | 0.5  | 24        |
| 74 | Multidimensional immunolabeling and 4D time-lapse imaging of vital ex vivo lung tissue. American<br>Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L323-L332.                                                                         | 2.9  | 24        |
| 75 | Generation of Human 3D Lung Tissue Cultures (3D-LTCs) for Disease Modeling. Journal of Visualized Experiments, 2019, , .                                                                                                                                          | 0.3  | 24        |
| 76 | BARD1 mediates TGF-Î <sup>2</sup> signaling in pulmonary fibrosis. Respiratory Research, 2015, 16, 118.                                                                                                                                                           | 3.6  | 22        |
| 77 | Systematic phenotyping and correlation of biomarkers with lung function and histology in lung<br>fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L919-L927.                                                         | 2.9  | 21        |
| 78 | Cell-surface phenotyping identifies CD36 and CD97 as novel markers of fibroblast quiescence in lung<br>fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315,<br>L682-L696.                                                | 2.9  | 21        |
| 79 | A transcriptomics-guided drug target discovery strategy identifies receptor ligands for lung regeneration. Science Advances, 2022, 8, eabj9949.                                                                                                                   | 10.3 | 20        |
| 80 | Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise<br>murine lung repair. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015,<br>308, L1014-L1024.                                       | 2.9  | 19        |
| 81 | Breaking the <i>In Vitro</i> Barrier in Respiratory Medicine. Engineered Microphysiological Systems for Chronic Obstructive Pulmonary Disease and Beyond. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 869-875.                         | 5.6  | 19        |
| 82 | SFTA2—A Novel Secretory Peptide Highly Expressed in the Lung—Is Modulated by Lipopolysaccharide<br>but Not Hyperoxia. PLoS ONE, 2012, 7, e40011.                                                                                                                  | 2.5  | 19        |
| 83 | Cigarette smoke alters the secretome of lung epithelial cells. Proteomics, 2017, 17, 1600243.                                                                                                                                                                     | 2.2  | 18        |
| 84 | Coactivator-Associated Arginine Methyltransferase-1 Function in Alveolar Epithelial Senescence and<br>Elastase-Induced Emphysema Susceptibility. American Journal of Respiratory Cell and Molecular<br>Biology, 2015, 53, 769-781.                                | 2.9  | 17        |
| 85 | In search of the fibrotic epithelial cell: opportunities for a collaborative network. Thorax, 2012, 67, 179-182.                                                                                                                                                  | 5.6  | 16        |
| 86 | Simultaneous Pharmacologic Inhibition of Yesâ€Associated Protein 1 and Glutaminase 1 via Inhaled<br>Poly(Lacticâ€coâ€Glycolic) Acid–Encapsulated Microparticles Improves Pulmonary Hypertension. Journal<br>of the American Heart Association, 2021, 10, e019091. | 3.7  | 16        |
| 87 | Single-cell RNA sequencing identifies G-protein coupled receptor 87 as a basal cell marker expressed in<br>distal honeycomb cysts in idiopathic pulmonary fibrosis. European Respiratory Journal, 2022, 59,<br>2102373.                                           | 6.7  | 16        |
| 88 | The Oncogene ECT2 Contributes to a Hyperplastic, Proliferative Lung Epithelial Cell Phenotype in<br>Idiopathic Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2019, 61,<br>713-726.                                              | 2.9  | 15        |
| 89 | Phenotypic drug screening in a human fibrosis model identified a novel class of antifibrotic therapeutics. Science Advances, 2021, 7, eabb3673.                                                                                                                   | 10.3 | 15        |
| 90 | Systematic Identification of Pharmacological Targets from Small-Molecule Phenotypic Screens. Cell<br>Chemical Biology, 2016, 23, 1302-1313.                                                                                                                       | 5.2  | 11        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary<br>Fibrosis. PLoS ONE, 2015, 10, e0136188.                                                                                                                        | 2.5 | 11        |
| 92  | Galectin-3: The Bridge over Troubled Waters. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 473-475.                                                                                                                                     | 5.6 | 10        |
| 93  | A drug screen with approved compounds identifies amlexanox as a novel Wnt/βâ€ɛatenin activator<br>inducing lung epithelial organoid formation. British Journal of Pharmacology, 2021, 178, 4026-4041.                                                            | 5.4 | 10        |
| 94  | WNT Signalling in Lung Physiology and Pathology. Handbook of Experimental Pharmacology, 2021, 269, 305-336.                                                                                                                                                      | 1.8 | 10        |
| 95  | From molecule to man: Integrating molecular biology with whole organ physiology in studying respiratory disease. Pulmonary Pharmacology and Therapeutics, 2011, 24, 466-470.                                                                                     | 2.6 | 8         |
| 96  | Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. Environmental<br>Pollution, 2022, 305, 119292.                                                                                                                          | 7.5 | 8         |
| 97  | Live and Let Die: Targeting Alveolar Epithelial Cell Proliferation in Pulmonary Fibrosis. American<br>Journal of Respiratory and Critical Care Medicine, 2014, 190, 1339-1341.                                                                                   | 5.6 | 5         |
| 98  | The new Back to Basics section: emerging concepts in basic and translational medicine. European<br>Respiratory Journal, 2014, 44, 297-298.                                                                                                                       | 6.7 | 5         |
| 99  | Towards a global initiative for fibrosis treatment (CIFT). ERJ Open Research, 2017, 3, 00106-2017.                                                                                                                                                               | 2.6 | 5         |
| 100 | Human lung stem cells: Oh, the places you'll go!. EMBO Molecular Medicine, 2011, 3, 575-577.                                                                                                                                                                     | 6.9 | 2         |
| 101 | New players in chronic lung disease identified at the European Respiratory Society International<br>Congress in Paris 2018: from microRNAs to extracellular vesicles. Journal of Thoracic Disease, 2018,<br>10, S2983-S2987.                                     | 1.4 | 2         |
| 102 | Decellularized Human Lung as Complex Three-Dimensional Tissue Culture Models to Study Functional<br>Behavior of. Methods in Molecular Biology, 2021, 2299, 447-456.                                                                                              | 0.9 | 2         |
| 103 | National Heart, Lung, and Blood Institute and Building Respiratory Epithelium and Tissue for Health<br>(BREATH) Consortium Workshop Report: Moving Forward in Lung Regeneration. American Journal of<br>Respiratory Cell and Molecular Biology, 2021, 65, 22-29. | 2.9 | 2         |
| 104 | Linking Wnt Signaling to Mucosal Inflammation. American Journal of Respiratory Cell and Molecular<br>Biology, 2017, 56, 551-552.                                                                                                                                 | 2.9 | 1         |
| 105 | Powering the formation of alveoli. ELife, 0, 11, .                                                                                                                                                                                                               | 6.0 | 1         |
| 106 | Three-dimensional tissue-based models for translational lung stem cell research: precision-cut lung slices. , 2021, , 222-231.                                                                                                                                   |     | 0         |
| 107 | Regenerative Medicine and the Hope for a Cure. Clinics in Chest Medicine, 2021, 42, 365-373.                                                                                                                                                                     | 2.1 | 0         |
| 108 | High-Throughput Drug Screening of ECM Deposition Inhibitors for Antifibrotic Drug Discovery.<br>Pneumologie, 2019, 73, .                                                                                                                                         | 0.1 | 0         |