
Zhangcai Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2114456/publications.pdf Version: 2024-02-01

ΖΗΛΝΟΟΛΙ ΟΙΝ

#	Article	IF	CITATIONS
1	Increased atmospheric vapor pressure deficit reduces global vegetation growth. Science Advances, 2019, 5, eaax1396.	4.7	755
2	Soil carbon sequestration and land use change associated with biofuel production: empirical evidence. GCB Bioenergy, 2016, 8, 66-80.	2.5	150
3	Changes in soil organic carbon under perennial crops. Global Change Biology, 2020, 26, 4158-4168.	4.2	132
4	Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment. Renewable and Sustainable Energy Reviews, 2018, 82, 2387-2400.	8.2	120
5	Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21968-21977.	3.3	110
6	Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts. Bioresource Technology, 2018, 251, 249-258.	4.8	106
7	Soil organic carbon sequestration potential of cropland in China. Global Biogeochemical Cycles, 2013, 27, 711-722.	1.9	83
8	Biofuel, land and water: maize, switchgrass or <i>Miscanthus</i> ?. Environmental Research Letters, 2013, 8, 015020.	2.2	76
9	Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous <scp>U</scp> nited <scp>S</scp> tates. GCB Bioenergy, 2012, 4, 277-288.	2.5	61
10	Carbon Consequences and Agricultural Implications of Growing Biofuel Crops on Marginal Agricultural Lands in China. Environmental Science & Technology, 2011, 45, 10765-10772.	4.6	60
11	Influence of spatially dependent, modeled soil carbon emission factors on life ycle greenhouse gas emissions of corn and cellulosic ethanol. GCB Bioenergy, 2016, 8, 1136-1149.	2.5	47
12	A global metaâ€analysis of soil organic carbon response to corn stover removal. GCB Bioenergy, 2019, 11, 1215-1233.	2.5	47
13	Natural Climate Solutions for China: The Last Mile to Carbon Neutrality. Advances in Atmospheric Sciences, 2021, 38, 889-895.	1.9	43
14	Evaluating the Potential of Marginal Land for Cellulosic Feedstock Production and Carbon Sequestration in the United States. Environmental Science & Technology, 2017, 51, 733-741.	4.6	41
15	Quantification of soil organic carbon sequestration potential in cropland: A model approach. Science China Life Sciences, 2010, 53, 868-884.	2.3	38
16	Land management change greatly impacts biofuels' greenhouse gas emissions. GCB Bioenergy, 2018, 10, 370-381.	2.5	38
17	Bioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective. GCB Bioenergy, 2015, 7, 1211-1221.	2.5	37
18	Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks. Global Biogeochemical Cycles, 2013, 27, 592-604.	1.9	31

ZHANGCAI QIN

#	Article	IF	CITATIONS
19	Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nature Communications, 2022, 13, 1653.	5.8	31
20	The role of China's terrestrial carbon sequestration 2010–2060 in offsetting energy-related CO2 emissions. National Science Review, 2022, 9, .	4.6	28
21	Consideration of land use change-induced surface albedo effects in life-cycle analysis of biofuels. Energy and Environmental Science, 2016, 9, 2855-2867.	15.6	25
22	Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global warming intensity in the conterminous <scp>U</scp> nited <scp>S</scp> tates. GCB Bioenergy, 2015, 7, 25-39.	2.5	22
23	Delayed impact of natural climate solutions. Clobal Change Biology, 2021, 27, 215-217.	4.2	20
24	Intercomparison of global terrestrial carbon fluxes estimated by MODIS and Earth system models. Science of the Total Environment, 2022, 810, 152231.	3.9	17
25	A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops. Scientific Data, 2019, 6, 57.	2.4	13
26	Droughtâ€Induced Salinity Enhancement Weakens Mangrove Greenhouse Gas Cycling. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006416.	1.3	13
27	Soil indigenous nutrients increase the resilience of maize yield to climatic warming in China. Environmental Research Letters, 2020, 15, 094047.	2.2	13
28	How Landâ€ 5 ea Interaction of Tidal and Sea Breeze Activity Affect Mangrove Net Ecosystem Exchange?. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034047.	1.2	12
29	Degradation of wetlands on the Qinghai-Tibetan Plateau causing a loss in soil organic carbon in 1966–2016. Plant and Soil, 2021, 467, 253-265.	1.8	11
30	Assessing albedo dynamics and its environmental controls of grasslands over the Tibetan Plateau. Agricultural and Forest Meteorology, 2021, 307, 108479.	1.9	11
31	Carbon and nitrogen dynamics in bioenergy ecosystems: 1. Model development, validation and sensitivity analysis. GCB Bioenergy, 2014, 6, 740-755.	2.5	9
32	Evaluation of CH4MOD _{wetland} and Terrestrial Ecosystem Model (TEM) used to estimate global CH ₄ emissions from natural wetlands. Geoscientific Model Development, 2020, 13, 3769-3788.	1.3	9
33	Carbon sequestration in soil and biomass under native and non-native mangrove ecosystems. Plant and Soil, 2022, 479, 61-76.	1.8	9
34	Carbon dioxide uptake overrides methane emission at the air-water interface of algae-shellfish mariculture ponds: Evidence from eddy covariance observations. Science of the Total Environment, 2022, 815, 152867.	3.9	8
35	Calibration and validation of phenological models for Biome-BGCMuSo in the grasslands of Tibetan Plateau using remote sensing data. Agricultural and Forest Meteorology, 2022, 322, 109001.	1.9	6
36	Animal waste use and implications to agricultural greenhouse gas emissions in the United States. Environmental Research Letters, 2021, 16, 064079.	2.2	5

Zhangcai Qin

#	Article	IF	CITATIONS
37	Net CO2 and CH4 emissions from restored mangrove wetland: New insights based on a case study in estuary of the Pearl River, China. Science of the Total Environment, 2022, 811, 151619.	3.9	5
38	Decarbonizing through nature. One Earth, 2022, 5, 449-451.	3.6	4
39	Lifeâ€cycle greenhouse gas emissions of corn kernel fiber ethanol. Biofuels, Bioproducts and Biorefining, 2018, 12, 1013-1022.	1.9	2
40	Differed Adaptive Strategies to Nutrient Status between Native and Exotic Mangrove Species. Forests, 2022, 13, 804.	0.9	1