
Huseyin Sumer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2114007/publications.pdf Version: 2024-02-01

HUSEVIN SUMED

#	Article	IF	CITATIONS
1	The Mechanisms of Restenosis and Relevance to Next Generation Stent Design. Biomolecules, 2022, 12, 430.	1.8	20
2	Alloreactivity of Allogeneic Mesenchymal Stem/Stromal Cells and Other Cellular Therapies: A Concise Review. Stem Cells International, 2022, 2022, 1-8.	1.2	8
3	Comparative analysis of extracellular vesicles isolated from human mesenchymal stem cells by different isolation methods and visualisation of their uptake. Experimental Cell Research, 2022, 414, 113097.	1.2	6
4	Indirect co-culture of lung carcinoma cells with hyperthermia-treated mesenchymal stem cells influences tumor spheroid growth in a collagen-based 3-dimensional microfluidic model. Cytotherapy, 2021, 23, 25-36.	0.3	23
5	Bovine iPSC and applications in precise genome engineering. , 2021, , 129-148.		Ο
6	Evaluation of natural endosymbiosis for progress towards artificial endosymbiosis. Symbiosis, 2021, 84, 1-17.	1.2	8
7	Forward Programming of Pluripotent Stem Cells to Neurons. Current Molecular Medicine, 2021, 21, 5-14.	0.6	2
8	Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells International, 2020, 2020, 1-11.	1.2	13
9	Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential. Stem Cells International, 2020, 2020, 1-10.	1.2	56
10	Binary Colloidal Crystal (BCC) Substrates for Controlling the Fate of Mouse Embryonic Stem Cells. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111133.	2.5	3
11	Selective Cytotoxicity of a Novel Trpâ€Rich Peptide against Lung Tumor Spheroids Encapsulated inside a 3D Microfluidic Device. Advanced Biology, 2020, 4, e1900285.	3.0	19
12	Patterning of biomaterials by aerosol jet printing: A parametric study. Bioprinting, 2020, 18, e00081.	2.9	15
13	On-chip anticancer drug screening – Recent progress in microfluidic platforms to address challenges in chemotherapy. Biosensors and Bioelectronics, 2019, 137, 236-254.	5.3	68
14	Outcome of safety and efficacy of allogeneic mesenchymal stromal cell derived from umbilical cord for the treatment of osteoarthritis in a randomized blinded placebo-controlled trial. Annals of Translational Medicine, 2019, 7, S154-S154.	0.7	0
15	Mesenchymal Stem Cells and Regenerative Medicine. Stem Cells International, 2018, 2018, 1-3.	1.2	4
16	New Approaches to Treat Osteoarthritis with Mesenchymal Stem Cells. Stem Cells International, 2018, 2018, 1-9.	1.2	34
17	Outcome of Allogeneic Adult Stem Cell Therapy in Dogs Suffering from Osteoarthritis and Other Joint Defects. Stem Cells International, 2018, 2018, 1-7.	1.2	57
18	Heterogeneity of mesenchymal and pluripotent stem cell populations grown on nanogrooves and nanopillars. Journal of Materials Chemistry B, 2017, 5, 7927-7938.	2.9	24

HUSEYIN SUMER

#	Article	IF	CITATIONS
19	Inhibition of JAK-STAT ERK/MAPK and Glycogen Synthase Kinase-3 Induces a Change in Gene Expression Profile of Bovine Induced Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-11.	1.2	8
20	Bone morphogenetic protein 4 and retinoic acid trigger bovine VASA homolog expression in differentiating bovine induced pluripotent stem cells. Molecular Reproduction and Development, 2016, 83, 149-161.	1.0	9
21	Genome Modification of Pluripotent Cells by Using Transcription Activator-Like Effector Nucleases (TALENs). Methods in Molecular Biology, 2015, 1330, 253-267.	0.4	1
22	Inducing Pluripotency in Cattle. Methods in Molecular Biology, 2015, 1330, 57-68.	0.4	0
23	Embryonic Stem Cell–Somatic Cell Fusion and Postfusion Enucleation. Methods in Molecular Biology, 2015, 1222, 61-69.	0.4	0
24	Functional Evaluation of ES–Somatic Cell Hybrids <i>In Vitro</i> and <i>In Vivo</i> . Cellular Reprogramming, 2014, 16, 167-174.	0.5	1
25	Integration-Free Human Induced Pluripotent Stem Cells from type 1 Diabetes Patient Skin Fibroblasts Show Increased Abundance of Pancreas-Specific microRNAs. Cell Medicine, 2014, 7, 15-24.	5.0	13
26	Induction of Pluripotency. Advances in Experimental Medicine and Biology, 2013, 786, 5-25.	0.8	0
27	The Effects of Nuclear Reprogramming on Mitochondrial DNA Replication. Stem Cell Reviews and Reports, 2013, 9, 1-15.	5.6	48
28	Temporal Requirements of cMyc Protein for Reprogramming Mouse Fibroblasts. Stem Cells International, 2012, 2012, 1-12.	1.2	5
29	Induction of Pluripotency in Adult Equine Fibroblasts without c-MYC. Stem Cells International, 2012, 2012, 1-9.	1.2	40
30	Design and Screening of a Glial Cell-Specific, Cell Penetrating Peptide for Therapeutic Applications in Multiple Sclerosis. PLoS ONE, 2012, 7, e45501.	1.1	18
31	Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012, 77, 338-346.e1.	0.9	87
32	The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology, 2012, 78, 1749-1762.	0.9	48
33	INDUCING PLURIPOTENCY IN RUMINANTS. Reproduction, Fertility and Development, 2012, 24, 285.	0.1	1
34	The Efficiency of Cell Fusion-Based Reprogramming Is Affected by the Somatic Cell Type and the <i>In Vitro</i> Age of Somatic Cells. Cellular Reprogramming, 2011, 13, 331-344.	0.5	15
35	Late Passage Human Fibroblasts Induced to Pluripotency Are Capable of Directed Neuronal Differentiation. Cell Transplantation, 2011, 20, 193-204.	1.2	16
36	Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts. Diabetes, 2011, 60, 1393-1398.	0.3	20

HUSEYIN SUMER

#	Article	IF	CITATIONS
37	NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts1. Journal of Animal Science, 2011, 89, 2708-2716.	0.2	126
38	The Generation of Live Offspring from Vitrified Oocytes. PLoS ONE, 2011, 6, e21597.	1.1	17
39	Cellular reprogramming of somatic cells. Indian Journal of Experimental Biology, 2011, 49, 409-15.	0.5	1
40	Generation of clinically relevant "induced pluripotent stem" (iPS) cells. Journal of Stem Cells, 2011, 6, 109-27.	1.0	18
41	Chromosomal and telomeric reprogramming following ES-somatic cell fusion. Chromosoma, 2010, 119, 167-176.	1.0	17
42	Comparison of reprogramming ability of mouse ES and iPS cells measured by somatic cell fusion. International Journal of Developmental Biology, 2010, 54, 1723-1728.	0.3	6
43	The Efficient Generation of Induced Pluripotent Stem (iPS) Cells from Adult Mouse Adipose Tissue-Derived and Neural Stem Cells. Cell Transplantation, 2010, 19, 525-536.	1.2	70
44	The use of signalling pathway inhibitors and chromatin modifiers for enhancing pluripotency. Theriogenology, 2010, 74, 525-533.	0.9	7
45	Reprogramming of Somatic Cells After Fusion With Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells. Stem Cells and Development, 2010, 19, 239-246.	1.1	24
46	Transcriptional Changes in Somatic Cells Recovered From Embryonic Stem–Somatic Heterokaryons. Stem Cells and Development, 2009, 18, 1361-1368.	1.1	18
47	Stable transgene expression in human embryonic stem cells after simple chemical transfection. Molecular Reproduction and Development, 2009, 76, 580-586.	1.0	30
48	Somatic cell nuclear transfer: pros and cons. Journal of Stem Cells, 2009, 4, 85-93.	1.0	6
49	A Novel Method for Somatic Cell Nuclear Transfer to Mouse Embryonic Stem Cells. Cloning and Stem Cells, 2005, 7, 265-271.	2.6	35
50	Effects of Scaffold/Matrix Alteration on Centromeric Function and Gene Expression. Journal of Biological Chemistry, 2004, 279, 37631-37639.	1.6	8
51	Building the centromere: from foundation proteins to 3D organization. Trends in Cell Biology, 2004, 14, 359-368.	3.6	154
52	Transcription within a Functional Human Centromere. Molecular Cell, 2003, 12, 509-516.	4.5	135
53	A Rapid Method of Genomic Array Analysis of Scaffold/Matrix Attachment Regions (S/MARs) Identifies a 2.5-Mb Region of Enhanced Scaffold/Matrix Attachment at a Human Neocentromere. Genome Research, 2003, 13, 1737-1743.	2.4	17