

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2113857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. Journal of the American Chemical Society, 2010, 132, 8466-8473.	6.6	887
2	A Controllable Synthesis of Rich Nitrogenâ€Doped Ordered Mesoporous Carbon for CO ₂ Capture and Supercapacitors. Advanced Functional Materials, 2013, 23, 2322-2328.	7.8	861
3	Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chemical Society Reviews, 2013, 42, 4054-4070.	18.7	403
4	Nitrogenâ€Doped Nanoporous Carbon/Graphene Nanoâ€Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. Advanced Functional Materials, 2015, 25, 5768-5777.	7.8	384
5	Rapid Construction of ZnO@ZIF-8 Heterostructures with Size-Selective Photocatalysis Properties. ACS Applied Materials & Interfaces, 2016, 8, 9080-9087.	4.0	310
6	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angewandte Chemie - International Edition, 2016, 55, 2048-2052.	7.2	281
7	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society, 2017, 139, 1706-1713.	6.6	274
8	Highly Ordered Mesoporous Tungsten Oxides with a Large Pore Size and Crystalline Framework for H ₂ S Sensing. Angewandte Chemie - International Edition, 2014, 53, 9035-9040.	7.2	250
9	A General Chelate-Assisted Co-Assembly to Metallic Nanoparticles-Incorporated Ordered Mesoporous Carbon Catalysts for Fischer–Tropsch Synthesis. Journal of the American Chemical Society, 2012, 134, 17653-17660.	6.6	227
10	A Versatile Iron–Tanninâ€Framework Ink Coating Strategy to Fabricate Biomassâ€Derived Iron Carbide/Feâ€Nâ€Carbon Catalysts for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2016, 55, 1355-1359.	7.2	216
11	Hierarchically Ordered Macro-/Mesoporous Silica Monolith: Tuning Macropore Entrance Size for Size-Selective Adsorption of Proteins. Chemistry of Materials, 2011, 23, 2176-2184.	3.2	200
12	Robust Thermoresponsive Polymer Composite Membrane with Switchable Superhydrophilicity and Superhydrophobicity for Efficient Oil–Water Separation. Environmental Science & Technology, 2016, 50, 906-914.	4.6	200
13	Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/Nâ€doped Carbon Composites for Oxygen Electrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 12470-12474.	7.2	178
14	Growth of g-C 3 N 4 on mesoporous TiO 2 spheres with high photocatalytic activity under visible light irradiation. Applied Catalysis B: Environmental, 2016, 188, 342-350.	10.8	167
15	Graphene oxide/core–shell structured metal–organic framework nano-sandwiches and their derived cobalt/N-doped carbon nanosheets for oxygen reduction reactions. Journal of Materials Chemistry A, 2017, 5, 10182-10189.	5.2	163
16	Solvent Evaporation Induced Aggregating Assembly Approach to Three-Dimensional Ordered Mesoporous Silica with Ultralarge Accessible Mesopores. Journal of the American Chemical Society, 2011, 133, 20369-20377.	6.6	158
17	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	6.6	153
18	A Micelle Fusion–Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. Journal of the American Chemical Society, 2016, 138, 12586-12595.	6.6	152

#	Article	IF	CITATIONS
19	A graphene-directed assembly route to hierarchically porous Co–N _x /C catalysts for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 16867-16873.	5.2	151
20	Metal–polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale, 2017, 9, 5323-5328.	2.8	140
21	Radially oriented mesoporous TiO ₂ microspheres with single-crystal–like anatase walls for high-efficiency optoelectronic devices. Science Advances, 2015, 1, e1500166.	4.7	139
22	Crossâ€Linked Polyphosphazene Hollow Nanosphereâ€Derived N/Pâ€Doped Porous Carbon with Single Nonprecious Metal Atoms for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 14639-14646.	7.2	133
23	Controlled Synthesis and Functionalization of Ordered Largeâ€Pore Mesoporous Carbons. Advanced Functional Materials, 2010, 20, 3658-3665.	7.8	127
24	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie - International Edition, 2018, 57, 9838-9843.	7.2	127
25	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	6.6	120
26	Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)- <i>b</i> -Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander. Chemistry of Materials, 2008, 20, 7281-7286.	3.2	115
27	Fabricating MnO ₂ Nanozymes as Intracellular Catalytic DNA Circuit Generators for Versatile Imaging of Baseâ€Excision Repair in Living Cells. Advanced Functional Materials, 2017, 27, 1702748.	7.8	106
28	Controllable synthesis of mesoporous carbon nanospheres and Fe–N/carbon nanospheres as efficient oxygen reduction electrocatalysts. Nanoscale, 2015, 7, 6247-6254.	2.8	104
29	Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness. Chemistry of Materials, 2009, 21, 3996-4005.	3.2	102
30	Synthesis of Dualâ€Mesoporous Silica Using Nonâ€Ionic Diblock Copolymer and Cationic Surfactant as Coâ€Templates. Angewandte Chemie - International Edition, 2012, 51, 6149-6153.	7.2	101
31	Green Synthesis of Hexagonal-Shaped WO ₃ ·0.33H ₂ O Nanodiscs Composed of Nanosheets. Crystal Growth and Design, 2008, 8, 3993-3998.	1.4	94
32	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. Chemistry of Materials, 2017, 29, 2211-2217.	3.2	89
33	Programming Enzyme-Initiated Autonomous DNAzyme Nanodevices in Living Cells. ACS Nano, 2017, 11, 11908-11914.	7.3	89
34	Regulation of AMPA Receptor Trafficking and Function by Glycogen Synthase Kinase 3. Journal of Biological Chemistry, 2010, 285, 26369-26376.	1.6	85
35	A Resolâ€Assisted Coâ€Assembly Approach to Crystalline Mesoporous Niobia Spheres for Electrochemical Biosensing. Angewandte Chemie - International Edition, 2013, 52, 10505-10510.	7.2	85
36	Hierarchical Cu ₂ S Microsponges Constructed from Nanosheets for Efficient Photocatalysis. Small, 2013, 9, 2702-2708.	5.2	85

#	Article	IF	CITATIONS
37	General Synthesis of Discrete Mesoporous Carbon Microspheres through a Confined Self-Assembly Process in Inverse Opals. ACS Nano, 2013, 7, 8706-8714.	7.3	79
38	Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. Angewandte Chemie - International Edition, 2014, 53, 2888-2892.	7.2	78
39	Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. Journal of Colloid and Interface Science, 2022, 606, 826-836.	5.0	76
40	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angewandte Chemie, 2016, 128, 2088-2092.	1.6	70
41	Sol–Gel Synthesis of Spherical Mesoporous High-Entropy Oxides. ACS Applied Materials & Interfaces, 2020, 12, 45155-45164.	4.0	67
42	Engineering mesoporous semiconducting metal oxides from metal-organic frameworks for gas sensing. Coordination Chemistry Reviews, 2021, 445, 214086.	9.5	67
43	A Template Carbonization Strategy to Synthesize Ordered Mesoporous Silica Microspheres with Trapped Sulfonated Carbon Nanoparticles for Efficient Catalysis. Angewandte Chemie - International Edition, 2012, 51, 10368-10372.	7.2	66
44	Single copy-sensitive electrochemical assay for circulating methylated DNA in clinical samples with ultrahigh specificity based on a sequential discrimination–amplification strategy. Chemical Science, 2017, 8, 4764-4770.	3.7	64
45	Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society, 2014, 136, 6822-6825.	6.6	62
46	Polydopamine@Gold Nanowaxberry Enabling Improved SERS Sensing of Pesticides, Pollutants, and Explosives in Complex Samples. Analytical Chemistry, 2018, 90, 9048-9054.	3.2	60
47	A Versatile Iron–Tanninâ€Framework Ink Coating Strategy to Fabricate Biomassâ€Derived Iron Carbide/Feâ€N arbon Catalysts for Efficient Oxygen Reduction. Angewandte Chemie, 2016, 128, 1377-1381.	1.6	59
48	Synthesis of gadolinium/iron–bimetal–phenolic coordination polymer nanoparticles for theranostic applications. Nanoscale, 2020, 12, 6096-6103.	2.8	54
49	Selfâ€Template Synthesis of Mesoporous Metal Oxide Spheres with Metalâ€Mediated Inner Architectures and Superior Sensing Performance. Advanced Functional Materials, 2018, 28, 1806144.	7.8	51
50	Thermoresponsive Amphoteric Metal–Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water. Advanced Materials, 2018, 30, e1802767.	11.1	51
51	Nanoporous carbon spheres derived from metal-phenolic coordination polymers for supercapacitor and biosensor. Journal of Colloid and Interface Science, 2019, 544, 241-248.	5.0	48
52	Amelioration of cardiac dysfunction and ventricular remodeling after myocardial infarction by danhong injection are critically contributed by anti-TGF-β-mediated fibrosis and angiogenesis mechanisms. Journal of Ethnopharmacology, 2016, 194, 559-570.	2.0	47
53	Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system. Chemosphere, 2019, 216, 749-756.	4.2	47
54	Hydrogel-polyurethane interpenetrating network material as an advanced draw agent for forward osmosis process. Water Research, 2016, 96, 292-298.	5.3	43

Jing Wei

#	Article	IF	CITATIONS
55	Azobenzeneâ€Derived Surfactants as Phototriggered Recyclable Templates for the Synthesis of Ordered Mesoporous Silica Nanospheres. Advanced Materials, 2014, 26, 1782-1787.	11.1	42
56	Hydrothermal Synthesis of Metal–Polyphenol Coordination Crystals and Their Derived Metal/Nâ€doped Carbon Composites for Oxygen Electrocatalysis. Angewandte Chemie, 2016, 128, 12658-12662.	1.6	42
57	Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal–organic framework molecular sieving membrane. Journal of Materials Chemistry A, 2017, 5, 16255-16262.	5.2	42
58	Large-pore ordered mesoporous carbons with tunable structures and pore sizes templated from poly(ethylene oxide)-b-poly(methyl methacrylate). Solid State Sciences, 2011, 13, 784-792.	1.5	41
59	Tricomponent Coassembly Approach To Synthesize Ordered Mesoporous Carbon/Silica Nanocomposites and Their Derivative Mesoporous Silicas with Dual Porosities. Chemistry of Materials, 2014, 26, 2438-2444.	3.2	41
60	Cardioprotection against ischemia/reperfusion injury by QiShenYiQi Pill® via ameliorate of multiple mitochondrial dysfunctions. Drug Design, Development and Therapy, 2015, 9, 3051.	2.0	41
61	Response to Osmotic Pressure versus Swelling Pressure: Comment on "Bifunctional Polymer Hydrogel Layers As Forward Osmosis Draw Agents for Continuous Production of Fresh Water Using Solar Energy― Environmental Science & Technology, 2014, 48, 4214-4215.	4.6	40
62	Sol–Gel Synthesis of Metal–Phenolic Coordination Spheres and Their Derived Carbon Composites. Angewandte Chemie, 2018, 130, 9986-9991.	1.6	39
63	Engineering microfluidic chip for circulating tumor cells: From enrichment, release to single cell analysis. TrAC - Trends in Analytical Chemistry, 2019, 117, 27-38.	5.8	39
64	Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS Applied Materials & Interfaces, 2021, 13, 40302-40314.	4.0	39
65	Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coordination Chemistry Reviews, 2022, 468, 214649.	9.5	39
66	Bimetallic Au@Pt Nanocrystal Sensitization Mesoporous α-Fe ₂ O ₃ Hollow Nanocubes for Highly Sensitive and Rapid Detection of Fish Freshness at Low Temperature. ACS Applied Materials & Interfaces, 2021, 13, 57597-57608.	4.0	38
67	The pore structure evolution and stability of mesoporous carbon FDU-15 under CO2, O2 or water vapor atmospheres. Microporous and Mesoporous Materials, 2008, 113, 305-314.	2.2	37
68	Rational synthesis of superparamagnetic core–shell structured mesoporous microspheres with large pore sizes. Journal of Materials Chemistry A, 2014, 2, 18322-18328.	5.2	37
69	Self-template synthesis of mesoporous Au-SnO2 nanospheres for low-temperature detection of triethylamine vapor. Sensors and Actuators B: Chemical, 2022, 356, 131358.	4.0	34
70	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	3.8	33
71	Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal. Microporous and Mesoporous Materials, 2021, 310, 110623.	2.2	32

Jing Wei

#	Article	IF	CITATIONS
73	Controllable synthesis of iron-polyphenol colloidal nanoparticles with composition-dependent photothermal performance. Journal of Colloid and Interface Science, 2021, 593, 172-181.	5.0	31
74	General Synthesis of Mixed Semiconducting Metal Oxide Hollow Spheres with Tunable Compositions for Low-Temperature Chemiresistive Sensing. ACS Applied Materials & Interfaces, 2019, 11, 35060-35067.	4.0	29
75	Engineered Janus probes modulate nucleic acid amplification to expand the dynamic range for direct detection of viral genomes in one microliter crude serum samples. Chemical Science, 2018, 9, 392-397.	3.7	27
76	Crossâ€Linked Polyphosphazene Hollow Nanosphereâ€Derived N/Pâ€Doped Porous Carbon with Single Nonprecious Metal Atoms for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 14747-14754.	1.6	27
77	Synthesis of Mesoporous CuO Hollow Sphere Nanozyme for Paper-Based Hydrogen Peroxide Sensor. Biosensors, 2021, 11, 258.	2.3	27
78	Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chemistry, 2022, 392, 133318.	4.2	27
79	A Shear Stress Regulated Assembly Route to Silica Nanotubes and Their Closely Packed Hollow Mesostructures. Angewandte Chemie - International Edition, 2013, 52, 11603-11606.	7.2	26
80	Synthesis of ZIF/CNT nanonecklaces and their derived cobalt nanoparticles/N-doped carbon catalysts for oxygen reduction reaction. Journal of Alloys and Compounds, 2020, 816, 152684.	2.8	24
81	Facile synthesis of metal-polyphenol-formaldehyde coordination polymer colloidal nanoparticles with sub-50 nm for T1-weighted magnetic resonance imaging. Chinese Chemical Letters, 2021, 32, 842-848.	4.8	24
82	Establishment and growth responses of Nile tilapia embryonic stemâ€like cell lines under feederâ€free condition. Development Growth and Differentiation, 2017, 59, 83-93.	0.6	23
83	Self-template synthesis of spherical mesoporous tin dioxide from tin-polyphenol-formaldehyde polymers for conductometric ethanol gas sensing. Sensors and Actuators B: Chemical, 2021, 341, 129965.	4.0	22
84	Peroxymonosulfate activation by mesoporous CuO nanocage for organic pollutants degradation via a singlet oxygen-dominated pathway. Journal of Environmental Chemical Engineering, 2021, 9, 106757.	3.3	22
85	Self-templated synthesis of mesoporous Au-ZnO nanospheres for seafood freshness detection. Sensors and Actuators B: Chemical, 2022, 360, 131662.	4.0	22
86	Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications. New Carbon Materials, 2022, 37, 196-222.	2.9	20
87	Facile synthesis of highly stable and well-dispersed mesoporous ZrO2/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene. Physical Chemistry Chemical Physics, 2010, 12, 10996.	1.3	19
88	Functional and Biomimetic DNA Nanostructures on Lipid Membranes. Langmuir, 2018, 34, 14721-14730.	1.6	19
89	Advances in Mesoporous Thin Films via Self-Assembly Process. Advanced Porous Materials, 2013, 1, 164-186.	0.3	18
90	Self-template synthesis of mesoporous vanadium oxide nanospheres with intrinsic peroxidase-like activity and high antibacterial performance. Journal of Colloid and Interface Science, 2022, 625, 435-445.	5.0	18

#	Article	IF	CITATIONS
91	Synthesis of Nitrogenâ€Doped Porous Carbon Nanocubes as a Catalyst Support for Methanol Oxidation. ChemCatChem, 2016, 8, 1901-1904.	1.8	17
92	DNAâ€Mediated Assembly of Gold Nanoparticles and Applications in Bioanalysis. ChemNanoMat, 2017, 3, 725-735.	1.5	16
93	ZIF-derived nitrogen-doped carbon/3D graphene frameworks for all-solid-state supercapacitors. RSC Advances, 2016, 6, 76575-76581.	1.7	15
94	Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge. Science of the Total Environment, 2020, 704, 135849.	3.9	15
95	Hybridizing TiO ₂ with Nitrogenâ€Doped Carbon: A New Route to A Highly Visible Lightâ€Active Photocatalyst. ChemistrySelect, 2017, 2, 1565-1572.	0.7	14
96	Identification, Prokaryote Expression of Medaka gdnfa/b and Their Biological Activity in a Spermatogonial Cell Line. Stem Cells and Development, 2017, 26, 197-205.	1.1	14
97	Synthesis of spiny metal–phenolic coordination crystals as a sensing platform for sequence-specific detection of nucleic acids. CrystEngComm, 2018, 20, 7626-7630.	1.3	14
98	Medaka vasa gene has an exonic enhancer for germline expression. Gene, 2015, 555, 403-408.	1.0	13
99	UV/ozone-assisted low temperature preparation of mesoporous TiO ₂ with tunable phase composition and enhanced solar light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 18791-18795.	5.2	11
100	The cellular protein expression of Foxp3 in lymphoid and non-lymphoid organs of Nile tilapia. Fish and Shellfish Immunology, 2015, 45, 300-306.	1.6	11
101	Simply controllable growth of single crystal plasmonic Au–Ag nano-spines with anisotropic multiple sites for highly sensitive and uniform surface-enhanced Raman scattering sensing. RSC Advances, 2016, 6, 66056-66065.	1.7	11
102	Monovalent Cation–Phenolic Crystals with pHâ€Driven Reversible Crystal Transformation. Chemistry - A European Journal, 2019, 25, 12281-12287.	1.7	11
103	Both Gfrα1a and Gfrα1b Are Involved in the Self-Renewal and Maintenance of Spermatogonial Stem Cells in Medaka. Stem Cells and Development, 2018, 27, 1658-1670.	1.1	10
104	Polygonum multiflorum Thunb suppress bile acid synthesis by activating Fxr-Fgf15 signaling in the intestine. Journal of Ethnopharmacology, 2019, 235, 472-480.	2.0	10
105	Porous 2D carbon nanosheets synthesized via organic groups triggered polymer particles exfoliation: An effective cathode catalyst for polymer electrolyte membrane fuel cells. Electrochimica Acta, 2020, 332, 135397.	2.6	10
106	Electrocatalysts: Nitrogenâ€Doped Nanoporous Carbon/Graphene Nanoâ€Sandwiches: Synthesis and Application for Efficient Oxygen Reduction (Adv. Funct. Mater. 36/2015). Advanced Functional Materials, 2015, 25, 5876-5876.	7.8	9
107	Investigating forward osmosis process for simultaneous preparation of brown coal slurry and wastewater reclamation. Fuel Processing Technology, 2015, 131, 414-420.	3.7	8
108	Development of a Processâ€Based N ₂ O Emission Model for Natural Forest and Grassland Ecosystems. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	8

#	Article	IF	CITATIONS
109	Polyphenol-Mediated Synthesis of Mesoporous Au–In ₂ O ₃ Nanospheres for Room-Temperature Detection of Triethylamine. ACS Applied Nano Materials, 2022, 5, 9688-9697.	2.4	7
110	Leukemia Inhibitory Factor Is Essential for the Self-Renewal of Embryonic Stem Cells from Nile Tilapia (<i>Oreochromis niloticus</i>) Through Stat3 Signaling. Stem Cells and Development, 2018, 27, 123-132.	1.1	6
111	Assembling gold nanoparticles into flower-like structures by complementary base pairing of DNA molecules with mediation by apoferritins. Chemical Communications, 2017, 53, 4581-4584.	2.2	4
112	Sensors: Self-Template Synthesis of Mesoporous Metal Oxide Spheres with Metal-Mediated Inner Architectures and Superior Sensing Performance (Adv. Funct. Mater. 51/2018). Advanced Functional Materials, 2018, 28, 1870364.	7.8	4
113	Differential expression patterns of the two paralogous Rec8 from Nile tilapia and their responsiveness to retinoic acid signaling. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2021, 253, 110563.	0.7	4
114	L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ethylene response factors. Journal of Experimental Botany, 2021, 72, 7035-7048.	2.4	4
115	Anionic oxoborane and thioxoborane molecules supported by a 1,2-bis(imino)acenaphthene ligand. Dalton Transactions, 2021, 50, 6797-6801.	1.6	3
116	Establishment of a stem Leydig cell line capable of 11-ketotestosterone production. Reproduction, Fertility and Development, 2020, 32, 1271.	0.1	3
117	Molecular structure, expression, and function analysis of BAFF gene in Chinese sucker, Myxocyprinus asiaticus. Fish Physiology and Biochemistry, 2021, 47, 225-238.	0.9	2
118	Progress on the Fabrication of Ordered Mesoporous Materials with Large Pores by Using Novel Amphiphilic Block Copolymers as Templates. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2017, 32, 1.	0.6	2
119	Characterization of nanog in Nile tilapia (Oreochromis niloticus) and its spatiotemporal expression patterns during embryonic and gonadal development. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2022, 259, 110718.	0.7	2
120	Water Desalination: Thermoresponsive Amphoteric Metal-Organic Frameworks for Efficient and Reversible Adsorption of Multiple Salts from Water (Adv. Mater. 34/2018). Advanced Materials, 2018, 30, 1870256.	11.1	1
121	Dynamic OD Estimation Simulation Optimization Based on Video License Plate Recognition. Journal of Highway and Transportation Research and Development (English Edition), 2011, 5, 82-87.	0.2	0