Hanqing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/211376/publications.pdf Version: 2024-02-01

HANOING CHEN

#	Article	IF	CITATIONS
1	Three-Step Tomographic Algorithm for Ionospheric Electron Density Reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-8.	2.7	2
2	Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environmental Pollution, 2022, 293, 118557.	3.7	17
3	A Novel Real-Time Error Adjustment Method With Considering Four Factors for Correcting Hourly Multi-Satellite Precipitation Estimates. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	2
4	Nanomedicine targets iron metabolism for cancer therapy. Cancer Science, 2022, 113, 828-837.	1.7	19
5	AgNPs Aggravated Hepatic Steatosis, Inflammation, Oxidative Stress, and Epigenetic Changes in Mice With NAFLD Induced by HFD. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	11
6	Multiscale Synchrotron-Based Imaging Analysis for the Transfer of PEGylated Gold Nanoparticles In Vivo. ACS Biomaterials Science and Engineering, 2021, 7, 1462-1474.	2.6	5
7	Interaction of Humic Acid with Graphene Oxide: Relation to Antibacterial Activities Against Escherichia coli. Journal of Nanoscience and Nanotechnology, 2021, 21, 1430-1438.	0.9	0
8	Iron oxide nanoparticles aggravate hepatic steatosis and liver injury in nonalcoholic fatty liver disease through BMP-SMAD-mediated hepatic iron overload. Nanotoxicology, 2021, 15, 761-778.	1.6	16
9	Polyvinylpyrrolidone functionalization induces deformable structure of graphene oxide nanosheets for lung-targeting delivery. Nano Today, 2021, 38, 101151.	6.2	16
10	Gold Nanoparticles Modified With Polyethyleneimine Disturbed the Activity of Drug-Metabolic Enzymes and Induced Inflammation-Mediated Liver Injury in Mice. Frontiers in Pharmacology, 2021, 12, 706791.	1.6	4
11	Bacterial cytoplasmic membranes synergistically enhance the antitumor activity of autologous cancer vaccines. Science Translational Medicine, 2021, 13, .	5.8	109
12	Colonic mucus-accumulating tungsten oxide nanoparticles improve the colitis therapy by targeting Enterobacteriaceae. Nano Today, 2021, 39, 101234.	6.2	28
13	IDDF2021-ABS-0205â€Akkermansia viable bacteria improves liver steatosis induced by high-fat diet relating to the regulation of gut microbiota in C57BL/6J MICE. , 2021, , .		0
14	IDDF2021-ABS-0207â€Type 2 resistant starch improves liver steatosis induced by high-fat diet relating to gut microbiota regulation and concentration of propionic acid in portal vein blood in C57BL/6J mice. , 2021, , .		1
15	Enhanced Antitumor Efficacy of Docetaxel-Loaded Monomethoxy Poly(ethylene glycol)-Poly(D,) Tj ETQq1 1 0.78 Nanoscience and Nanotechnology, 2020, 20, 7263-7270.	4314 rgBT 0.9	「/Overlock 1 0
16	Hepatic impacts of gold nanoparticles with different surface coatings as revealed by assessing the hepatic drug-metabolizing enzyme and lipid homeostasis in mice. NanoImpact, 2020, 20, 100259.	2.4	12
17	Rapamycin-Loaded mPEG-PLGA Nanoparticles Ameliorate Hepatic Steatosis and Liver Injury in Non-alcoholic Fatty Liver Disease. Frontiers in Chemistry, 2020, 8, 407.	1.8	31
18	Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. Journal of Nanobiotechnology, 2020, 18, 45.	4.2	59

HANQING CHEN

#	Article	IF	CITATIONS
19	In vivo pharmacokinetics, transfer and clearance study of graphene oxide by La/Ce dual elemental labelling method. NanoImpact, 2020, 17, 100213.	2.4	15
20	Nutrient mTORC1 signaling contributes to hepatic lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease. Liver Research, 2020, 4, 15-22.	0.5	27
21	Adsorption and oxidation of SO ₂ on the surface of TiO ₂ nanoparticles: the role of terminal hydroxyl and oxygen vacancy–Ti ³⁺ states. Physical Chemistry Chemical Physics, 2020, 22, 9943-9953.	1.3	21
22	DEP domain–containing mTOR–interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acuteâ€onâ€chronic liver injury in alcoholic liver disease. Hepatology, 2018, 68, 496-514.	3.6	85
23	Acute Oral Administration of Singleâ€Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice. Advanced Healthcare Materials, 2018, 7, e1701313.	3.9	40
24	Gut Microbiota: Acute Oral Administration of Singleâ€Walled Carbon Nanotubes Increases Intestinal Permeability and Inflammatory Responses: Association with the Changes in Gut Microbiota in Mice (Adv. Healthcare Mater. 13/2018). Advanced Healthcare Materials, 2018, 7, 1870053.	3.9	0
25	Transferrin Adsorbed on PEGylated Gold Nanoparticles and Its Relevance to Targeting Specificity. Journal of Nanoscience and Nanotechnology, 2018, 18, 5306-5313.	0.9	11
26	ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Scientific Reports, 2017, 7, 43126.	1.6	76
27	Interrogating the variation of element masses and distribution patterns in single cells using ICP-MS with a high efficiency cell introduction system. Analytical and Bioanalytical Chemistry, 2017, 409, 1415-1423.	1.9	45
28	The effects of orally administered Ag, TiO 2 and SiO 2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 2017, 8, 80-88.	2.4	139
29	<l>ln Vivo</l> Toxicity Evaluation of Graphene Oxide in <l>Drosophila Melanogaster</l> After Oral Administration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7472-7478.	0.9	5
30	Chirality of Graphene Oxide–Humic Acid Sandwich Complex Induced by a Twisted, Long-Range-Ordered Nanostructure. Journal of Physical Chemistry C, 2016, 120, 25789-25795.	1.5	17
31	Coculture with Lowâ€Dose SWCNT Attenuates Bacterial Invasion and Inflammation in Human Enterocyteâ€like Cacoâ€2 Cells. Small, 2015, 11, 4366-4378.	5.2	18
32	Structure and catalytic activities of ferrous centers confined on the interface between carbon nanotubes and humic acid. Nanoscale, 2015, 7, 2651-2658.	2.8	7
33	Time-resolved ICP-MS analysis of mineral element contents and distribution patterns in single cells. Analyst, The, 2015, 140, 523-531.	1.7	76
34	Oral magnetite nanoparticles disturb the development of <i>Drosophila melanogaster</i> from oogenesis to adult emergence. Nanotoxicology, 2015, 9, 302-312.	1.6	43
35	Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma. Scientific Reports, 2014, 4, 4275.	1.6	35
36	Broadâ€Spectrum Antibacterial Activity of Carbon Nanotubes to Human Gut Bacteria. Small, 2013, 9, 2735-2746.	5.2	236

#	ARTICLE	IF	CITATIONS
37	The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer's disease. Metallomics, 2012, 4, 289.	1.0	48
38	Immunogold labeling and X-ray fluorescence microscopy reveal enrichment ratios of Cu and Zn, metabolism of APP and amyloid-β plaque formation in a mouse model of Alzheimer's disease. Metallomics, 2012, 4, 1113.	1.0	20