
Ruud Kortlever

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2113624/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. Journal of Physical Chemistry Letters, 2015, 6, 4073-4082.	2.1	1,524
2	Electrochemical CO ₂ reduction on Cu ₂ O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Physical Chemistry Chemical Physics, 2014, 16, 12194-12201.	1.3	458
3	Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nature Communications, 2015, 6, 8177.	5.8	456
4	Electrochemical CO ₂ Reduction to Formic Acid at Low Overpotential and with High Faradaic Efficiency on Carbon-Supported Bimetallic Pd–Pt Nanoparticles. ACS Catalysis, 2015, 5, 3916-3923.	5.5	394
5	Manipulating the Hydrocarbon Selectivity of Copper Nanoparticles in CO ₂ Electroreduction by Process Conditions. ChemElectroChem, 2015, 2, 354-358.	1.7	361
6	Iridium-based double perovskites for efficient water oxidation in acid media. Nature Communications, 2016, 7, 12363.	5.8	353
7	Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nature Communications, 2016, 7, 10748.	5.8	294
8	CO ₂ Reduction Selective for C _{≥2} Products on Polycrystalline Copper with N-Substituted Pyridinium Additives. ACS Central Science, 2017, 3, 853-859.	5.3	226
9	Electrolyte Effects on the Electrochemical Reduction of CO ₂ . ChemPhysChem, 2019, 20, 2926-2935.	1.0	151
10	Palladium–gold catalyst for the electrochemical reduction of CO ₂ to C ₁ –C ₅ hydrocarbons. Chemical Communications, 2016, 52, 10229-10232.	2.2	146
11	Enhanced electrocatalytic activity of Au@Cu core@shell nanoparticles towards CO ₂ reduction. Journal of Materials Chemistry A, 2015, 3, 23690-23698.	5.2	138
12	Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst. Catalysis Today, 2015, 244, 58-62.	2.2	138
13	Electrochemical carbon dioxide and bicarbonate reduction on copper in weakly alkaline media. Journal of Solid State Electrochemistry, 2013, 17, 1843-1849.	1.2	116
14	Electrochemical CO ₂ reduction on nanostructured metal electrodes: fact or defect?. Chemical Science, 2020, 11, 1738-1749.	3.7	83
15	In Situ ATR–SEIRAS of Carbon Dioxide Reduction at a Plasmonic Silver Cathode. Journal of the American Chemical Society, 2020, 142, 11750-11762.	6.6	68
16	Sn-Based Electrocatalyst Stability: A Crucial Piece to the Puzzle for the Electrochemical CO ₂ Reduction toward Formic Acid. ACS Energy Letters, 2021, 6, 4317-4327.	8.8	51
17	Electroreduction of CO ₂ /CO to C ₂ Products: Process Modeling, Downstream Separation, System Integration, and Economic Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 17862-17880.	1.8	35
18	Kinetics of Photocatalytic Water Oxidation at Liposomes: Membrane Anchoring Stabilizes the Photosensitizer. ACS Catalysis, 2016, 6, 5968-5977.	5.5	30

Ruud Kortlever

#	Article	IF	CITATIONS
19	Local structure and composition of PtRh nanoparticles produced through cathodic corrosion. Physical Chemistry Chemical Physics, 2017, 19, 10301-10308.	1.3	11
20	Gastight Hydrodynamic Electrochemistry: Design for a Hermetically Sealed Rotating Disk Electrode Cell. Analytical Chemistry, 2017, 89, 581-585.	3.2	10
21	Benchmarking the Electrochemical CO ₂ Reduction on Polycrystalline Copper Foils: The Importance of Microstructure Versus Applied Potential. ChemCatChem, 2022, 14, .	1.8	9
22	Surface Coverage as an Important Parameter for Predicting Selectivity Trends in Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2022, 126, 11927-11936.	1.5	9
23	Oxidation reactions in chromium(III) formate electrolytes at platinum and at a catalytic mixed metal oxide coating of iridium oxide and tantalum oxide. Electrochimica Acta, 2016, 213, 194-200.	2.6	4
24	Modeling the Performance of an Integrated Battery and Electrolyzer System. Industrial & Engineering Chemistry Research, 2021, 60, 10988-10996.	1.8	4