Stephane Uroz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2113608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The mineral weathering ability of <i>Collimonas pratensis</i> PMB3(1) involves a Malleobactinâ€mediated iron acquisition system. Environmental Microbiology, 2022, 24, 784-802.	1.8	4
2	Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria. Trends in Microbiology, 2022, 30, 882-897.	3.5	17
3	Oak decaying wood harbors taxonomically and functionally different bacterial communities in sapwood and heartwood. Soil Biology and Biochemistry, 2021, 155, 108160.	4.2	12
4	lsotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. ISME Journal, 2021, 15, 3062-3075.	4.4	16
5	Forest plant cover and mineral type determine the diversity and composition of mineral-colonizing fungal communities. European Journal of Soil Biology, 2021, 105, 103334.	1.4	5
6	Acidisoma silvae sp. nov. and Acidisomacellulosilytica sp. nov., Two Acidophilic Bacteria Isolated from Decaying Wood, Hydrolyzing Cellulose and Producing Poly-3-hydroxybutyrate. Microorganisms, 2021, 9, 2053.	1.6	12
7	Dual transcriptomics and proteomics analyses of the early stage of interaction between <i>Caballeronia mineralivorans</i> <scp>PML1</scp> (12) and mineral. Environmental Microbiology, 2020, 22, 3838-3862.	1.8	10
8	Draft Genome Sequence of Collimonas pratensis Strain PMB3(1), an Effective Mineral-Weathering and Chitin-Hydrolyzing Bacterial Strain. Microbiology Resource Announcements, 2020, 9, .	0.3	4
9	Precipitation Partitioning—Hydrologic Highways Between Microbial Communities of the Plant Microbiome?. , 2020, , 229-252.		9
10	Identification of a novel type of glucose dehydrogenase involved in the mineral weathering ability of Collimonas pratensis strain PMB3(1). FEMS Microbiology Ecology, 2020, 97, .	1.3	3
11	Orchard Conditions and Fruiting Body Characteristics Drive the Microbiome of the Black Truffle Tuber aestivum. Frontiers in Microbiology, 2019, 10, 1437.	1.5	31
12	Plant Symbionts Are Engineers of the Plant-Associated Microbiome. Trends in Plant Science, 2019, 24, 905-916.	4.3	93
13	A microcosm approach highlights the response of soil mineral weathering bacterial communities to an increase of K and Mg availability. Scientific Reports, 2019, 9, 14403.	1.6	29
14	Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Scientific Reports, 2019, 9, 605.	1.6	56
15	Impact of soil pedogenesis on the diversity and composition of fungal communities across the California soil chronosequence of Mendocino. Mycorrhiza, 2018, 28, 343-356.	1.3	10
16	Identification, distribution, and quantification of biominerals in a deciduous forest. Geobiology, 2017, 15, 296-310.	1.1	14
17	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	5.8	555
18	Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science, 2017, 356, .	6.0	333

STEPHANE UROZ

#	Article	IF	CITATIONS
19	Mineral Types and Tree Species Determine the Functional and Taxonomic Structures of Forest Soil Bacterial Communities. Applied and Environmental Microbiology, 2017, 83, .	1.4	39
20	Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biology and Biochemistry, 2017, 115, 109-123.	4.2	14
21	Taxonomic and functional shifts in the beech rhizosphere microbiome across a natural soil toposequence. Scientific Reports, 2017, 7, 9604.	1.6	77
22	Caballeronia mineralivorans sp. nov., isolated from oak- Scleroderma citrinum mycorrhizosphere. Systematic and Applied Microbiology, 2017, 40, 345-351.	1.2	14
23	Ecology of the forest microbiome: Highlights of temperate and borealÂecosystems. Soil Biology and Biochemistry, 2016, 103, 471-488.	4.2	140
24	Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees. Soil Biology and Biochemistry, 2016, 103, 429-445.	4.2	37
25	Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Scientific Reports, 2016, 6, 27756.	1.6	101
26	Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing. Microbial Ecology, 2016, 72, 428-442.	1.4	14
27	Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development. Mycorrhiza, 2016, 26, 389-399.	1.3	75
28	Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences. Microbial Ecology, 2016, 71, 482-493.	1.4	96
29	Draft Genome Sequence of Burkholderia sp. Strain PML1(12), an Ectomycorrhizosphere-Inhabiting Bacterium with Effective Mineral-Weathering Ability. Genome Announcements, 2015, 3, .	0.8	5
30	The Mineralosphere Concept: Mineralogical Control of the Distribution and Function of Mineral-associated Bacterial Communities. Trends in Microbiology, 2015, 23, 751-762.	3.5	128
31	Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biology and Biochemistry, 2015, 88, 403-413.	4.2	151
32	Black truffle <i>â€</i> associated bacterial communities during the development and maturation of <scp><i>T</i></scp> <i>uber melanosporum</i> ascocarps and putative functional roles. Environmental Microbiology, 2014, 16, 2831-2847.	1.8	133
33	Structure and function of bacterial communities in ageing soils: Insights from the Mendocino ecological staircase. Soil Biology and Biochemistry, 2014, 69, 265-274.	4.2	46
34	Diversity and structure of bacterial communities associated with <scp><i>P</i></scp> <i>hanerochaete chrysosporium</i> during wood decay. Environmental Microbiology, 2014, 16, 2238-2252.	1.8	51
35	Functional Profiling and Distribution of the Forest Soil Bacterial Communities Along the Soil Mycorrhizosphere Continuum. Microbial Ecology, 2013, 66, 404-415.	1.4	32
36	A short-term mineral amendment impacts the mineral weathering bacterial communities in an acidic forest soil. Research in Microbiology, 2013, 164, 729-739.	1.0	26

STEPHANE UROZ

#	Article	IF	CITATIONS
37	Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms. Geochimica Et Cosmochimica Acta, 2013, 106, 287-306.	1.6	37
38	Taxonomic and functional diversity of <i>Streptomyces</i> in a forest soil. FEMS Microbiology Letters, 2013, 342, 157-167.	0.7	47
39	An improved method compatible with metagenomic analyses to extract genomic DNA from soils in <i>Tuber melanosporum</i> orchards. Journal of Applied Microbiology, 2013, 115, 163-170.	1.4	19
40	Functional Assays and Metagenomic Analyses Reveals Differences between the Microbial Communities Inhabiting the Soil Horizons of a Norway Spruce Plantation. PLoS ONE, 2013, 8, e55929.	1.1	147
41	Correlation of the Abundance of Betaproteobacteria on Mineral Surfaces with Mineral Weathering in Forest Soils. Applied and Environmental Microbiology, 2012, 78, 7114-7119.	1.4	84
42	Minerals Affect the Specific Diversity of Forest Soil Bacterial Communities. Geomicrobiology Journal, 2012, 29, 88-98.	1.0	42
43	Distinct Ectomycorrhizospheres Share Similar Bacterial Communities as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes. Applied and Environmental Microbiology, 2012, 78, 3020-3024.	1.4	60
44	Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Research in Microbiology, 2011, 162, 820-831.	1.0	98
45	<i>Pseudomonas fluorescens</i> BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environmental Microbiology Reports, 2011, 3, 203-210.	1.0	53
46	Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biology and Biochemistry, 2011, 43, 2012-2022.	4.2	62
47	Long term impact of mineral amendment on the distribution of the mineral weathering associated bacterial communities from the beech Scleroderma citrinum ectomycorrhizosphere. Soil Biology and Biochemistry, 2011, 43, 2275-2282.	4.2	49
48	Linking diversity to function: highlight on the mineral weathering bacteria. Open Life Sciences, 2011, 6, 817-820.	0.6	5
49	The role of ectomycorrhizal communities in forest ecosystem processes: New perspectives and emerging concepts. Soil Biology and Biochemistry, 2010, 42, 679-698.	4.2	412
50	The bacterial genus <i>Collimonas</i> : mycophagy, weathering and other adaptive solutions to life in oligotrophic soil environments. Environmental Microbiology, 2010, 12, 281-292.	1.8	118
51	Influence of Forest Trees on the Distribution of Mineral Weathering-Associated Bacterial Communities of the <i>Scleroderma citrinum</i> Mycorrhizosphere. Applied and Environmental Microbiology, 2010, 76, 4780-4787.	1.4	69
52	Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports, 2010, 2, 281-288.	1.0	309
53	Interactions between mycorrhizal fungi and mycorrhizosphere bacteria during mineral weathering: Budget analysis and bacterial quantification. Soil Biology and Biochemistry, 2009, 41, 1935-1942.	4.2	57
54	Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biology and Biochemistry, 2009, 41, 2178-2186.	4.2	69

STEPHANE UROZ

#	Article	IF	CITATIONS
55	Quorum Sensing and Quorum Quenching: The Yin and Yang of Bacterial Communication. ChemBioChem, 2009, 10, 205-216.	1.3	273
56	454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist, 2009, 184, 449-456.	3.5	908
57	Mineral weathering by bacteria: ecology, actors and mechanisms. Trends in Microbiology, 2009, 17, 378-387.	3.5	556
58	Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi. FEMS Microbiology Ecology, 2008, 65, 271-278.	1.3	104
59	Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biology and Biochemistry, 2008, 40, 2460-2463.	4.2	25
60	A <i>Rhodococcus qsdA</i> -Encoded Enzyme Defines a Novel Class of Large-Spectrum Quorum-Quenching Lactonases. Applied and Environmental Microbiology, 2008, 74, 1357-1366.	1.4	177
61	Effect of the Mycorrhizosphere on the Genotypic and Metabolic Diversity of the Bacterial Communities Involved in Mineral Weathering in a Forest Soil. Applied and Environmental Microbiology, 2007, 73, 3019-3027.	1.4	248
62	N-acyl homoserine lactones are degraded via an amidolytic activity in Comamonas sp. strain D1. Archives of Microbiology, 2007, 187, 249-256.	1.0	61
63	N-hexanoyl-l-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiology Ecology, 2005, 52, 13-20.	1.3	107
64	Bacterial populations in the rhizosphere of tobacco plants producing the quorum-sensing signals hexanoyl-homoserine lactone and 3-oxo-hexanoyl-homoserine lactone. FEMS Microbiology Ecology, 2004, 51, 19-29.	1.3	34
65	The Ti Plasmid of Agrobacterium tumefaciens Harbors an attM-Paralogous Gene, aiiB, Also Encoding N-Acyl Homoserine Lactonase Activity. Applied and Environmental Microbiology, 2003, 69, 4989-4993.	1.4	189