
Saz Murad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2113502/publications.pdf Version: 2024-02-01

ςν2 Μήσνο

#	Article	IF	CITATIONS
1	An Excellent Gain Flatness 3.0–7.0 GHz CMOS PA for UWB Applications. IEEE Microwave and Wireless Components Letters, 2010, 20, 510-512.	3.2	40
2	Carbon Nanotube and Resistive Random Access Memory Based Unbalanced Ternary Logic Gates and Basic Arithmetic Circuits. IEEE Access, 2020, 8, 104701-104717.	4.2	38
3	Low Group Delay 3.1–10.6 GHz CMOS Power Amplifier for UWB Applications. IEEE Microwave and Wireless Components Letters, 2012, 22, 41-43.	3.2	36
4	High efficiency, good linearity, and excellent phase linearity of 3.1-4.8 GHz CMOS UWB PA with a current-reused technique. IEEE Transactions on Consumer Electronics, 2010, 56, 1241-1246.	3.6	27
5	FPGA Based SPWM Bridge Inverter. American Journal of Applied Sciences, 2007, 4, 584-586.	0.2	20
6	Simulation of Brillouin and Rayleigh scattering in distributed fibre optic for temperature and strain sensing application. Sensors and Actuators A: Physical, 2013, 190, 191-196.	4.1	18
7	A 2.4-GHz 0.18-μm CMOS Class E single-ended switching power amplifier with a self-biased cascode. AEU - International Journal of Electronics and Communications, 2010, 64, 813-818.	2.9	15
8	A 3.0–7.5 GHz CMOS UWB PA for group 1~3 MB-OFDM application using current-reused and shunt-shunt feedback. , 2009, , .		14
9	Copper ion-exchanged channel waveguides optimization for optical trapping. Progress in Biophysics and Molecular Biology, 2013, 112, 118-123.	2.9	12
10	A 2.4 GHz 0.18-µm CMOS Class E single-ended power amplifier without spiral inductors. , 2010, , .		11
11	High gain 2.4 GHz CMOS low noise amplifier for Wireless Sensor Network Applications. , 2013, , .		11
12	Linearity improvement of 5.2â€GHz CMOS upâ€conversion mixer for wireless applications. Microwave and Optical Technology Letters, 2012, 54, 923-925.	1.4	9
13	Hybrid logarithmic number system arithmetic unit: A review. , 2013, , .		9
14	A 3.1 - 4.8 GHz CMOS UWB Power Amplifier Using Current Reused Technique. , 2009, , .		8
15	High linearity 5.2 GHz CMOS up-conversion mixer using derivative superposition method. , 2010, , .		7
16	Stochastic Motion of Teratocarcinoma Cells on PEG Functionalised Surfaces. Physics Procedia, 2011, 22, 498-504.	1.2	7
17	High efficiency CMOS Class E power amplifier using 0.13 µm technology. , 2012, , .		7
18	5–11GHz CMOS PA with 158.9±41ps group delay and low power using current-reused technique. AEU - International Journal of Electronics and Communications, 2012, 66, 928-932.	2.9	7

SAZ MURAD

#	Article	IF	CITATIONS
19	Simulation of distributed fibre optic sensor for temperature and stress sensing. , 2011, , .		6
20	Simple distributed Brillouin scattering modeling for temperature and strain sensing. , 2012, , .		6
21	A design of 5.2 GHz CMOS up-conversion mixer with IF input active balun. , 2011, , .		5
22	Improved Subtraction Function for Logarithmic Number System. Procedia Engineering, 2013, 53, 387-392.	1.2	5
23	Design of RF to DC conversion circuit for energy harvesting in CMOS 0.13-μm technology. AlP Conference Proceedings, 2018, , .	0.4	5
24	A 3.0. , 2010, , .		4
25	A 6–10.6 GHz CMOS PA with common-gate as an input stage for UWB transmitters. , 2011, , .		4
26	A fully integrated CMOS up-conversion mixer with input active balun for wireless applications. , 2011, , .		4
27	Interpolator algorithms for approximating the LNS addition and subtraction: Design and analysis. , 2012, , .		4
28	Design of a 2.4 GHz CMOS LNA using two-stage forward body bias technique for WSN application. , 2015, , .		4
29	High linearity 3.0-5.0 GHz ultrawideband CMOS up-conversion mixer with parallel capacitor. Microwave and Optical Technology Letters, 2015, 57, 427-429.	1.4	4
30	A study on Relay Effect via Magnetic Resonant Coupling for Wireless Power Transfer. MATEC Web of Conferences, 2016, 78, 01095.	0.2	4
31	Low noise figure 2.4 GHz down conversion CMOS mixer for wireless sensor network application. , 2016, , .		4
32	UWB CMOS low noise amplifier for mode 1. , 2017, , .		3
33	Design of a low-power CMOS operational amplifier with common-mode feedback for pipeline analog-to-digital converter applications. Turkish Journal of Electrical Engineering and Computer Sciences, 2017, 25, 1908-1921.	1.4	3
34	Monitoring System for Uninterruptible Power Supply. American Journal of Applied Sciences, 2007, 4, 181-183.	0.2	3
35	Low power, low group delay MB-OFDM UWB CMOS power amplifier using current-reused technique. , 2011, , .		2
36	The Surface Morphology Characterization of Electroless Nickel Immersion Gold Under Bump		2

Metallurgy (UBM) Using SEM. , 2011, , .

Saz Murad

#	Article	IF	CITATIONS
37	Modified CMFB Circuit with Enhanced Accuracy for Data Converter Application. Applied Mechanics and Materials, 0, 446-447, 992-996.	0.2	2
38	A 900-2400 MHz AC-DC Rectifier Circuit for Radio Frequency Energy Harvesting. MATEC Web of Conferences, 2016, 78, 01096.	0.2	2
39	Ultra-Low Power CMOS RF Mixer for Wireless Sensor Networks Application: A Review. MATEC Web of Conferences, 2017, 97, 01037.	0.2	2
40	Low Power CMOS Operational Amplifier with Integrated Common-Mode Feedback for Data Converter. MATEC Web of Conferences, 2017, 97, 01046.	0.2	2
41	Ultra-Low Power 0.55 mW 2.4 GHz CMOS Low-Noise Amplifier for Wireless Sensor Network. IETE Journal of Research, 2022, 68, 2063-2068.	2.6	2
42	Dual Frequency Integrated Antenna (DFIA) With Image Rejection. , 0, , .		1
43	A 9-bit current-steering Digital to Analog Converter for differential dc-offset compensation of a baseband chain. , 2014, , .		1
44	A NOVEL 1.6 KV HIGH VOLTAGE LOW CURRENT STEP-UP DC-DC CONVERTER WITH COCKCROFT-WALTON VOLTAGE MULTIPLIER FOR POWER SUPPLY MODULES. Jurnal Teknologi (Sciences and Engineering), 2019, 81, .	0.4	1
45	A 3.5â€CHz hybrid CMOS class E power amplifier with reverse body bias design for 5G applications. AIP Conference Proceedings, 2021, , .	0.4	1
46	A Study and Analysis of High Efficiency CMOS Power Amplifier for IoT Applications. Journal of Physics: Conference Series, 2021, 1755, 012020.	0.4	1
47	Design and Analysis of an Efficient Repository System for Protein Coefficients in Systolic Array-Based Architecture by Using Xilinx Virtex-5 FPGA. Advanced Science Letters, 2017, 23, 11267-11271.	0.2	1
48	Digital All-Pass Filter Modeling Based on Desired Group Delay Using Advanced Material: A Review on the Signal Processing Part. Applied Mechanics and Materials, 2015, 815, 338-342.	0.2	0
49	A 160 MHz gm-C low-pass filter design based on a lossy integrator synthesis. , 2015, , .		Ο
50	An Efficient Scheduling Technique for Biological Sequence Alignment. Applied Mechanics and Materials, 0, 754-755, 1087-1092.	0.2	0
51	Extrinsic and Intrinsic Modeling of InGaAs/InAlAs pHEMT for Wireless Applications. Applied Mechanics and Materials, 0, 815, 369-373.	0.2	0
52	Analysis of Signal Propagation in an Experiment Room with Epoxy Covered Floor for Wireless Sensor Network Applications. MATEC Web of Conferences, 2017, 97, 01041.	0.2	0
53	FPGA-based protein sequence alignment : A review. EPJ Web of Conferences, 2017, 162, 01075.	0.3	0
54	A Low Power 2.4 GHz CMOS Mixer Using Forward Body Bias Technique for Wireless Sensor Network. IOP Conference Series: Materials Science and Engineering, 2018, 318, 012032.	0.6	0

#	Article	IF	CITATIONS
55	A VERY LOW-DROPOUT VOLTAGE REGULATOR IN 0.18-M CMOS TECHNOLOGY FOR POWER MANAGEMENT SYSTEM. Jurnal Teknologi (Sciences and Engineering), 2020, 82, 11-19.	0.4	0