
Rita C R Perlingeiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2113324/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Generation of human myogenic progenitors from pluripotent stem cells for in vivo regeneration. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	4
2	Fukutin-Related Protein: From Pathology to Treatments. Trends in Cell Biology, 2021, 31, 197-210.	7.9	12
3	Genomic Safe Harbor Expression of PAX7 for the Generation of Engraftable Myogenic Progenitors. Stem Cell Reports, 2021, 16, 10-19.	4.8	18
4	NAD+ enhances ribitol and ribose rescue of α-dystroglycan functional glycosylation in human FKRP-mutant myotubes. ELife, 2021, 10, .	6.0	9
5	A universal gene correction approach for FKRP-associated dystroglycanopathies to enable autologous cell therapy. Cell Reports, 2021, 36, 109360.	6.4	12
6	Myogenic Cell Transplantation in Genetic and Acquired Diseases of Skeletal Muscle. Frontiers in Genetics, 2021, 12, 702547.	2.3	18
7	Chromatin accessibility profiling identifies evolutionary conserved loci in activated human satellite cells. Stem Cell Research, 2021, 55, 102496.	0.7	4
8	Defective autophagy and increased apoptosis contribute toward the pathogenesis of FKRP-associated muscular dystrophies. Stem Cell Reports, 2021, 16, 2752-2767.	4.8	5
9	Loss of Dystroglycan Drives Cellular Senescence via Defective Mitosis-Mediated Genomic Instability. International Journal of Molecular Sciences, 2020, 21, 4961.	4.1	8
10	Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology. Nature Communications, 2020, 11, 6222.	12.8	28
11	Therapeutic effect of TRC105 and decitabine combination in AML xenografts. Heliyon, 2020, 6, e05242.	3.2	2
12	Pluripotent stem cell-derived skeletal muscle fibers preferentially express myosin heavy-chain isoforms associated with slow and oxidative muscles. Skeletal Muscle, 2020, 10, 17.	4.2	1
13	Efficient engraftment of pluripotent stem cell-derived myogenic progenitors in a novel immunodeficient mouse model of limb girdle muscular dystrophy 21. Skeletal Muscle, 2020, 10, 10.	4.2	12
14	Skeletal Muscle Constructs Engineered from Human Embryonic Stem Cell Derived Myogenic Progenitors Exhibit Enhanced Contractile Forces When Differentiated in a Medium Containing EGMâ€⊋ Supplements. Advanced Biology, 2019, 3, 1900005.	3.0	11
15	Transplantation studies reveal internuclear transfer of toxic RNA in engrafted muscles of myotonic dystrophy 1 mice. EBioMedicine, 2019, 47, 553-562.	6.1	4
16	Pluripotent Stem Cell-Based Therapeutics for Muscular Dystrophies. Trends in Molecular Medicine, 2019, 25, 803-816.	6.7	14
17	Gene Correction of LGMD2A Patient-Specific iPSCs for the Development of Targeted Autologous Cell Therapy. Molecular Therapy, 2019, 27, 2147-2157.	8.2	36
18	Pax3 cooperates with Ldb1 to direct local chromosome architecture during myogenic lineage specification. Nature Communications, 2019, 10, 2316.	12.8	28

#	Article	IF	CITATIONS
19	Time-dependent Pax3-mediated chromatin remodeling and cooperation with Six4 and Tead2 specify the skeletal myogenic lineage in developing mesoderm. PLoS Biology, 2019, 17, e3000153.	5.6	23
20	Pluripotent stem cell-derived myogenic progenitors remodel their molecular signature upon in vivo engraftment. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4346-4351.	7.1	35
21	Serial transplantation reveals a critical role for endoglin in hematopoietic stem cell quiescence. Blood, 2019, 133, 688-696.	1.4	15
22	Screening identifies small molecules that enhance the maturation of human pluripotent stem cell-derived myotubes. ELife, 2019, 8, .	6.0	45
23	Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. Cell Stem Cell, 2018, 23, 74-85.e6.	11.1	48
24	Induced Pluripotent Stem Cells for Neuromuscular Diseases: Potential for Disease Modeling, Drug Screening, and Regenerative Medicine. , 2018, , .		3
25	Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials, 2018, 183, 54-66.	11.4	34
26	Recapitulating muscle disease phenotypes with myotonic dystrophy 1 iPS cells: a tool for disease modeling and drug discovery. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	24
27	Expansion and Purification Are Critical for the Therapeutic Application of Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cell Reports, 2017, 9, 12-22.	4.8	60
28	Endoglin: a novel target for therapeutic intervention in acute leukemias revealed in xenograft mouse models. Blood, 2017, 129, 2526-2536.	1.4	23
29	The DUX4 homeodomains mediate inhibition of myogenesis and are functionally exchangeable with the Pax7 homeodomain. Journal of Cell Science, 2017, 130, 3685-3697.	2.0	41
30	Generation of skeletal myogenic progenitors from human pluripotent stem cells using non-viral delivery of minicircle DNA. Stem Cell Research, 2017, 23, 87-94.	0.7	11
31	Myogenic progenitor specification from pluripotent stem cells. Seminars in Cell and Developmental Biology, 2017, 72, 87-98.	5.0	28
32	PAX7 Targets, CD54, Integrin α9β1, and SDC2, Allow Isolation of Human ESC/iPSC-Derived Myogenic Progenitors. Cell Reports, 2017, 19, 2867-2877.	6.4	62
33	Pax7 remodels the chromatin landscape in skeletal muscle stem cells. PLoS ONE, 2017, 12, e0176190.	2.5	40
34	312. Gene Correction of LGMD2A Patient-Specific iPS Cells for Targeted Autologous Cell Therapy. Molecular Therapy, 2016, 24, S125-S126.	8.2	2
35	Myogenic Progenitors from Mouse Pluripotent Stem Cells for Muscle Regeneration. Methods in Molecular Biology, 2016, 1460, 191-208.	0.9	11
36	Efficient Generation of Skeletal Myogenic Progenitors from Human Pluripotent Stem Cells. , 2016, , 277-285.		2

#	Article	IF	CITATIONS
37	Endoglin integrates BMP and Wnt signalling to induce haematopoiesis through JDP2. Nature Communications, 2016, 7, 13101.	12.8	18
38	Treatment with rGDF11 does not improve the dystrophic muscle pathology of mdx mice. Skeletal Muscle, 2016, 6, 21.	4.2	15
39	Muscle cell identity requires Pax7-mediated lineage-specific DNA demethylation. BMC Biology, 2016, 14, 30.	3.8	19
40	Endoglin (CD105) in AML: A Potential Novel Target for Therapeutic Intervention. Blood, 2016, 128, 5211-5211.	1.4	0
41	Pax3-induced expansion enables the genetic correction of dystrophic satellite cells. Skeletal Muscle, 2015, 5, 36.	4.2	14
42	Coaxing stem cells for skeletal muscle repair. Advanced Drug Delivery Reviews, 2015, 84, 198-207.	13.7	37
43	Membraneâ€Stabilizing Copolymers Confer Protection to Dystrophic Skeletal Muscle in vitro and in vivo. FASEB Journal, 2015, 29, 1039.3.	0.5	0
44	Derivation of Skeletal Myogenic Precursors from Human Pluripotent Stem Cells Using Conditional Expression of PAX7. Methods in Molecular Biology, 2014, 1357, 423-439.	0.9	20
45	Dominant Lethal Pathologies in Male Mice Engineered to Contain an X-Linked DUX4 Transgene. Cell Reports, 2014, 8, 1484-1496.	6.4	65
46	Physiological and ultrastructural features of human induced pluripotent and embryonic stem cell-derived skeletal myocytes in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8275-8280.	7.1	36
47	Pax3 and Tbx5 Specify Whether PDGFRα+ Cells Assume Skeletal or Cardiac Muscle Fate in Differentiating Embryonic Stem Cells. Stem Cells, 2014, 32, 2072-2083.	3.2	18
48	Stem cells for skeletal muscle regeneration: therapeutic potential and roadblocks. Translational Research, 2014, 163, 409-417.	5.0	46
49	An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nature Communications, 2013, 4, 1549.	12.8	124
50	Expression levels of endoglin distinctively identify hematopoietic and endothelial progeny at different stages of yolk sac hematopoiesis. Stem Cells, 2013, 31, 1893-1901.	3.2	18
51	Are we there yet? Navigating roadblocks to induced pluripotent stem cell therapy translation. Regenerative Medicine, 2013, 8, 389-391.	1.7	1
52	A New Immuno-, Dystrophin-Deficient Model, the <i>NSG-mdx 4Cv</i> Mouse, Provides Evidence for Functional Improvement Following Allogeneic Satellite Cell Transplantation. Stem Cells, 2013, 31, 1611-1620.	3.2	90
53	Functional Dissection of Pax3 in Paraxial Mesoderm Development and Myogenesis. Stem Cells, 2013, 31, 59-70.	3.2	23
54	A Perspective on the Potential of Human iPS Cell-Based Therapies for Muscular Dystrophies: Advancements So Far and Hurdles to Overcome. Journal of Stem Cell Research & Therapy, 2013, 03, .	0.3	5

#	Article	IF	CITATIONS
55	A critical role for endoglin in the emergence of blood during embryonic development. Blood, 2012, 119, 5417-5428.	1.4	36
56	Effect of endoglin overexpression during embryoid body development. Experimental Hematology, 2012, 40, 837-846.	0.4	16
57	Human ES- and iPS-Derived Myogenic Progenitors Restore DYSTROPHIN and Improve Contractility upon Transplantation in Dystrophic Mice. Cell Stem Cell, 2012, 10, 610-619.	11.1	411
58	Etv2 Is Expressed in the Yolk Sac Hematopoietic and Endothelial Progenitors and Regulates <i>Lmo2</i> Gene Expression. Stem Cells, 2012, 30, 1611-1623.	3.2	65
59	Engraftment of ES-Derived Myogenic Progenitors in a Severe Mouse Model of Muscular Dystrophy. Journal of Stem Cell Research & Therapy, 2012, 01, .	0.3	25
60	Modulation of TGF-β signaling by endoglin in murine hemangioblast development and primitive hematopoiesis. Blood, 2011, 118, 88-97.	1.4	39
61	Functional Myogenic Engraftment from Mouse iPS Cells. Stem Cell Reviews and Reports, 2011, 7, 948-957.	5.6	106
62	Assessment of the Myogenic Stem Cell Compartment Following Transplantation of <i>Pax3</i> / <i>Pax7</i> -Induced Embryonic Stem Cell-Derived Progenitors. Stem Cells, 2011, 29, 777-790.	3.2	111
63	Clonal Analysis Reveals a Common Progenitor for Endothelial, Myeloid, and Lymphoid Precursors in Umbilical Cord Blood. Circulation Research, 2010, 107, 1460-1469.	4.5	24
64	Endoglin Identifies the First Wave of Hematopoietic Progenitors During Embryogenesis Blood, 2010, 116, 1600-1600.	1.4	0
65	Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Experimental Cell Research, 2009, 315, 2624-2636.	2.6	63
66	Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Experimental Neurology, 2009, 220, 212-216.	4.1	39
67	The Therapeutic Potential of Embryonic and Adult Stem Cells for Skeletal Muscle Regeneration. Stem Cell Reviews and Reports, 2008, 4, 217-225.	5.6	24
68	Prospective Isolation of Skeletal Muscle Stem Cells with a Pax7 Reporter. Stem Cells, 2008, 26, 3194-3204.	3.2	152
69	Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nature Medicine, 2008, 14, 134-143.	30.7	308
70	Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Experimental Cell Research, 2008, 314, 1721-1733.	2.6	57
71	Mesodermal patterning activity of SCL. Experimental Hematology, 2008, 36, 1593-1603.	0.4	38
72	DUX4c, an FSHD candidate gene, interferes with myogenic regulators and abolishes myoblast differentiation. Experimental Neurology, 2008, 214, 87-96.	4.1	77

#	Article	IF	CITATIONS
73	Lineage-specific reprogramming as a strategy for cell therapy. Cell Cycle, 2008, 7, 1732-1737.	2.6	17
74	Endoglin is required for hemangioblast and early hematopoietic development. Development (Cambridge), 2007, 134, 3041-3048.	2.5	62
75	SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood, 2007, 109, 1743-1751.	1.4	482
76	Mesodermal Patterning Activity of the Transcription Factor SCL. Blood, 2007, 110, 1241-1241.	1.4	0
77	A Role for Thrombopoietin in Hemangioblast Development. Stem Cells, 2003, 21, 272-280.	3.2	43
78	Development of Hematopoietic Repopulating Cells from Embryonic Stem Cells. Methods in Enzymology, 2003, 365, 114-129.	1.0	11
79	HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors. Cell, 2002, 109, 29-37.	28.9	726
80	Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. Biotechnology and Bioengineering, 2002, 78, 442-453.	3.3	321
81	HYDROXYUREA PROMOTES THE REDUCTION OF SPONTANEOUS BFU-e TO NORMAL LEVELS IN SS AND S \hat{I}^2 THALASSEMIC PATIENTS. Hemoglobin, 2001, 25, 1-7.	0.8	7
82	Autocrine and paracrine effects of an ES-cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene, 2001, 20, 2636-2646.	5.9	43
83	Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid-myeloid potential. Development (Cambridge), 2001, 128, 4597-4604.	2.5	92
84	Engulfment and killing capabilities of neutrophils and phagocytic splenic function in persons occupationally exposed to lead. International Journal of Immunopharmacology, 1994, 16, 239-244.	1.1	9