
## Juan Dominguez-Bendala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2112730/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 2011, 54, 2159-2172.                     | 7.3  | 283       |
| 2  | Quantitative differential expression analysis reveals miR-7 as major islet microRNA. Biochemical and Biophysical Research Communications, 2008, 366, 922-926.                 | 2.1  | 134       |
| 3  | MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets. PLoS ONE, 2013, 8, e55064.                                                                            | 2.5  | 123       |
| 4  | Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proceedings of the United States of America, 2020, 117, 10876-10887.                    | 7.1  | 109       |
| 5  | Biliary tree stem cells, precursors to pancreatic committed progenitors: Evidence for possible life-long pancreatic organogenesis. Stem Cells, 2013, 31, 1966-1979.           | 3.2  | 99        |
| 6  | TAT-Mediated Neurogenin 3 Protein Transduction Stimulates Pancreatic Endocrine Differentiation In<br>Vitro. Diabetes, 2005, 54, 720-726.                                      | 0.6  | 77        |
| 7  | Antisense miR-7 Impairs Insulin Expression in Developing Pancreas and in Cultured Pancreatic Buds.<br>Cell Transplantation, 2012, 21, 1761-1774.                              | 2.5  | 75        |
| 8  | Generation of Glucose-Responsive, Insulin-Producing Cells from Human Umbilical Cord Blood-Derived<br>Mesenchymal Stem Cells. Cell Transplantation, 2012, 21, 1321-1339.       | 2.5  | 67        |
| 9  | Enhanced Oxygenation Promotes $\hat{l}^2$ -Cell Differentiation In Vitro. Stem Cells, 2007, 25, 3155-3164.                                                                    | 3.2  | 60        |
| 10 | MicroRNA signature of the human developing pancreas. BMC Genomics, 2010, 11, 509.                                                                                             | 2.8  | 59        |
| 11 | BMP-7 Induces Adult Human Pancreatic Exocrine-to-Endocrine Conversion. Diabetes, 2015, 64, 4123-4134.                                                                         | 0.6  | 57        |
| 12 | Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI<br>Insight, 2020, 5, .                                                  | 5.0  | 53        |
| 13 | P2RY1/ALK3-Expressing Cells within the Adult Human Exocrine Pancreas Are BMP-7 Expandable and Exhibit Progenitor-like Characteristics. Cell Reports, 2018, 22, 2408-2420.     | 6.4  | 47        |
| 14 | Influence of In Vitro and In Vivo Oxygen Modulation on <i>β</i> Cell Differentiation From Human<br>Embryonic Stem Cells. Stem Cells Translational Medicine, 2014, 3, 277-289. | 3.3  | 38        |
| 15 | Sodium Butyrate Activates Genes of Early Pancreatic Development in Embryonic Stem Cells. Cloning and Stem Cells, 2006, 8, 140-149.                                            | 2.6  | 37        |
| 16 | Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nature<br>Communications, 2020, 11, 3265.                                      | 12.8 | 34        |
| 17 | Oxygen: a master regulator of pancreatic development?. Biology of the Cell, 2009, 101, 431-440.                                                                               | 2.0  | 33        |
| 18 | A Double Fail-Safe Approach to Prevent Tumorigenesis and Select Pancreatic β Cells from Human<br>Embryonic Stem Cells. Stem Cell Reports, 2019, 12, 611-623.                  | 4.8  | 32        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Secretory Functions of Macrophages in the Human Pancreatic Islet Are Regulated by Endogenous<br>Purinergic Signaling. Diabetes, 2020, 69, 1206-1218.                                                | 0.6 | 29        |
| 20 | The Human Endocrine Pancreas: New Insights on Replacement and Regeneration. Trends in Endocrinology and Metabolism, 2016, 27, 153-162.                                                              | 7.1 | 28        |
| 21 | A Physiological Pattern of Oxygenation Using Perfluorocarbon-Based Culture Devices Maximizes<br>Pancreatic Islet Viability and Enhances β-Cell Function. Cell Transplantation, 2013, 22, 1723-1733. | 2.5 | 27        |
| 22 | Stem cell-derived islet cells for transplantation. Current Opinion in Organ Transplantation, 2011, 16, 76-82.                                                                                       | 1.6 | 26        |
| 23 | Pancreatic Progenitors: There and Back Again. Trends in Endocrinology and Metabolism, 2019, 30, 4-11.                                                                                               | 7.1 | 25        |
| 24 | The Importance of Proper Oxygenation in 3D Culture. Frontiers in Bioengineering and Biotechnology, 2021, 9, 634403.                                                                                 | 4.1 | 20        |
| 25 | CADM1 is essential for KSHV-encoded vGPCR-and vFLIP-mediated chronic NF-κB activation. PLoS<br>Pathogens, 2018, 14, e1006968.                                                                       | 4.7 | 19        |
| 26 | The Role of MicroRNAs in Diabetes-Related Oxidative Stress. International Journal of Molecular<br>Sciences, 2019, 20, 5423.                                                                         | 4.1 | 19        |
| 27 | Present and future cell therapies for pancreatic beta cell replenishment. World Journal of<br>Gastroenterology, 2012, 18, 6876.                                                                     | 3.3 | 18        |
| 28 | Intra-Amniotic Soluble Endoglin Impairs Lung Development in Neonatal Rats. American Journal of<br>Respiratory Cell and Molecular Biology, 2017, 57, 468-476.                                        | 2.9 | 15        |
| 29 | TAT-Mediated Transduction of MafA Protein In Utero Results in Enhanced Pancreatic Insulin<br>Expression and Changes in Islet Morphology. PLoS ONE, 2011, 6, e22364.                                 | 2.5 | 14        |
| 30 | Emerging diabetes therapies: Bringing back the $\hat{I}^2$ -cells. Molecular Metabolism, 2022, 60, 101477.                                                                                          | 6.5 | 13        |
| 31 | Association between the Mediterranean Diet and Metabolic Syndrome with Serum Levels of miRNA in<br>Morbid Obesity. Nutrients, 2021, 13, 436.                                                        | 4.1 | 11        |
| 32 | Article Commentary: Stem Cell Plasticity and Tissue Replacement. Cell Transplantation, 2005, 14, 423-425.                                                                                           | 2.5 | 10        |
| 33 | Protein Transduction: A Novel Approach to Induce In Vitro Pancreatic Differentiation. Cell<br>Transplantation, 2006, 15, 85-90.                                                                     | 2.5 | 9         |
| 34 | Intracardial Embryonic Delivery of Developmental Modifiers In Utero. Cold Spring Harbor Protocols,<br>2012, 2012, pdb.prot069427-pdb.prot069427.                                                    | 0.3 | 6         |
| 35 | Temporal single-cell regeneration studies: the greatest thing since sliced pancreas?. Trends in Endocrinology and Metabolism, 2021, 32, 433-443.                                                    | 7.1 | 4         |
| 36 | Pancreatic Development. , 2009, , 11-33.                                                                                                                                                            |     | 3         |

Pancreatic Development., 2009,, 11-33. 36

| #  | Article                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------|-----|-----------|
| 37 | Human pancreatic progenitors. , 2020, , 183-200.                                    |     | 2         |
| 38 | Stem cell plasticity and tissue replacement. Cell Transplantation, 2005, 14, 423-5. | 2.5 | 2         |
| 39 | MicroRNAs in Pancreas and Islet Development. , 2015, , 401-418.                     |     | 1         |
| 40 | Development of Bioartificial Pancreas/Pancreas Organoids. , 2019, , 209-209.        |     | 0         |
| 41 | Stem Cell Differentiation: General Approaches. , 2009, , 51-61.                     |     | Ο         |
| 42 | Pancreatic Reprogramming. , 2013, , 155-168.                                        |     | 0         |