Yilin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111640/publications.pdf

Version: 2024-02-01

331670 345221 1,333 39 21 36 citations h-index g-index papers 39 39 39 1788 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Recent advances in high performance donor-acceptor polymers for organic photovoltaics. Progress in Polymer Science, 2017, 70, 34-51.	24.7	217
2	Covalent Organic Frameworks for Batteries. Advanced Functional Materials, 2021, 31, 2100505.	14.9	154
3	A Specific Nucleophilic Ring-Opening Reaction of Aziridines as a Unique Platform for the Construction of Hydrogen Polysulfides Sensors. Organic Letters, 2015, 17, 2776-2779.	4.6	83
4	Review on the Role of Polymers in Luminescent Solar Concentrators. Journal of Polymer Science Part A, 2019, 57, 201-215.	2.3	83
5	Low Elastic Modulus and High Charge Mobility of Low-Crystallinity Indacenodithiophene-Based Semiconducting Polymers for Potential Applications in Stretchable Electronics. Macromolecules, 2018, 51, 6352-6358.	4.8	80
6	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	24.0	66
7	Tuning photophysical properties of triphenylamine and aromatic cyano conjugate-based wavelength-shifting compounds by manipulating intramolecular charge transfer strength. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 251, 1-9.	3.9	62
8	Increasing the power output of a CdTe solar cell via luminescent down shifting molecules with intramolecular charge transfer and aggregation-induced emission characteristics. Energy and Environmental Science, 2013, 6, 2907.	30.8	51
9	Synthesis and characterizations of benzothiadiazole-based fluorophores as potential wavelength-shifting materials. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 231, 51-59.	3.9	44
10	An indacenodithiophene-based semiconducting polymer with high ductility for stretchable organic electronics. Polymer Chemistry, 2017, 8, 5185-5193.	3.9	38
11	TiO2 microspheres with cross-linked cyclodextrin coating exhibit improved stability and sustained photocatalytic degradation of bisphenol A in secondary effluent. Water Research, 2020, 183, 116095.	11.3	35
12	Rational design of tetraphenylethylene-based luminescent down-shifting molecules: photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units. Physical Chemistry Chemical Physics, 2014, 16, 26193-26202.	2.8	33
13	Self-Assembled Amphiphilic Block Copolymers/CdTe Nanocrystals for Efficient Aqueous-Processed Hybrid Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 17942-17948.	8.0	32
14	A structurally modified perylene dye for efficient luminescent solar concentrators. Solar Energy, 2016, 136, 668-674.	6.1	31
15	Large-area luminescent solar concentrator utilizing donor-acceptor luminophore with nearly zero reabsorption: Indoor/outdoor performance evaluation. Journal of Luminescence, 2021, 231, 117837.	3.1	30
16	Luminescent solar concentrators performing under different light conditions. Solar Energy, 2019, 188, 1248-1255.	6.1	29
17	Tribological study of hydrolytically stable S-containing alkyl phenylboric esters as lubricant additives. RSC Advances, 2014, 4, 25118-25126.	3. 6	26
18	Rapid, Ambient Temperature Synthesis of Imine Covalent Organic Frameworks Catalyzed by Transition-Metal Nitrates. Chemistry of Materials, 2021, 33, 3394-3400.	6.7	26

#	Article	IF	CITATIONS
19	Elucidating the Influence of Side-Chain Circular Distribution on the Crack Onset Strain and Hole Mobility of Near-Amorphous Indacenodithiophene Copolymers. Macromolecules, 2020, 53, 7511-7518.	4.8	25
20	Transformation of One-Dimensional Linear Polymers into Two-Dimensional Covalent Organic Frameworks Through Sequential Reversible and Irreversible Chemistries. Chemistry of Materials, 2021, 33, 413-419.	6.7	25
21	Eggshell membrane derived nitrogen rich porous carbon for selective electrosorption of nitrate from water. Water Research, 2022, 216, 118351.	11.3	24
22	Solutionâ€Deposited and Patternable Conductive Polymer Thinâ€Film Electrodes for Microbial Bioelectronics. Advanced Materials, 2022, 34, e2109442.	21.0	20
23	Sideâ€Chain Engineering for Highâ€Performance Conjugated Polymer Batteries. Advanced Functional Materials, 2021, 31, 2009263.	14.9	19
24	Rapid Processing of Bottlebrush Coatings through UV-Induced Cross-Linking. ACS Macro Letters, 2020, 9, 1135-1142.	4.8	14
25	Boosting the cost-effectiveness of luminescent solar concentrators through subwavelength sanding treatment. Solar Energy, 2020, 198, 151-159.	6.1	13
26	Enhancing the output current of a CdTe solar cell via a CN-free hydrocarbon luminescent down-shifting fluorophore with intramolecular energy transfer and restricted internal rotation characteristics. Photochemical and Photobiological Sciences, 2015, 14, 833-841.	2.9	11
27	XANES characteristics of tribofilms generated by dithiophosphate additive in water at different test temperatures and durations. Surface and Interface Analysis, 2009, 41, 779-784.	1.8	10
28	Regional measurements to analyze large-area luminescent solar concentrators. Renewable Energy, 2020, 160, 127-135.	8.9	10
29	Highâ€performance hybrid luminescentâ€scattering solar concentrators based on a luminescent conjugated polymer. Polymer International, 2021, 70, 475-482.	3.1	10
30	Improving the photostability of printed organic photovoltaics through luminescent solar concentrators. Optical Materials, 2020, 108, 110194.	3.6	8
31	Improved Mechanical Durability of Highâ€Performance OPVs Using Semiâ€Interpenetrating Networks. Advanced Optical Materials, 2020, 8, 2000516.	7.3	6
32	Spectral response of large-area luminescent solar concentrators. Applied Optics, 2020, 59, 8964.	1.8	6
33	Physical, optical, electronic properties and mobility measurements of a new donor–acceptor–donor oligomer. Synthetic Metals, 2012, 162, 1198-1203.	3.9	5
34	Solution processed lowâ€k dielectric coreâ€shell nanoparticles for additive manufacturing of microwave devices. Journal of Applied Polymer Science, 2017, 134, 45335.	2.6	4
35	Estimating the theoretical limit of the power conversion efficiency of a luminescent solar concentrator device from the perspective of Shockley-Queisser limit. , 2015, , .		1
36	A Preliminary Investigation on the Photothermal Properties of Luminescent Solar Concentrators. Optics, 2021, 2, 148-154.	1,2	1

YILIN LI

#	Article	IF	CITATIONS
37	Mapping the Surface Heat of Luminescent Solar Concentrators. Optics, 2021, 2, 259-265.	1.2	1
38	Theoretical modeling on luminescent down-shifting process: A Discussion on luminescent molecule design. , $2014, $, .		0
39	Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators. Electronic Materials, 2021, 2, 545-552.	1.9	O