
Andrey Korshunov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA methylation-based classification of central nervous system tumours. Nature, 2018, 555, 469-474.	13.7	1,872
2	Hotspot Mutations in H3F3A and IDH1 Define Distinct Epigenetic and Biological Subgroups of Glioblastoma. Cancer Cell, 2012, 22, 425-437.	7.7	1,551
3	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	7.7	933
4	Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 2011, 121, 397-405.	3.9	914
5	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	13.7	787
6	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	13.5	702
7	Atypical Teratoid/Rhabdoid Tumors Are Comprised of Three Epigenetic Subgroups with Distinct Enhancer Landscapes. Cancer Cell, 2016, 29, 379-393.	7.7	438
8	Practical implementation of DNA methylation and copy-number-based CNS tumor diagnostics: the Heidelberg experience. Acta Neuropathologica, 2018, 136, 181-210.	3.9	308
9	Novel, improved grading system(s) for IDH-mutant astrocytic gliomas. Acta Neuropathologica, 2018, 136, 153-166.	3.9	298
10	Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathologica, 2015, 129, 669-678.	3.9	277
11	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	5.1	268
12	A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing. Nature Communications, 2015, 6, 10001.	5.8	266
13	Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathologica, 2013, 126, 907-915.	3.9	254
14	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	3.9	244
15	Sarcoma classification by DNA methylation profiling. Nature Communications, 2021, 12, 498.	5.8	237
16	Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathologica, 2018, 136, 273-291.	3.9	190
17	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathologica, 2017, 134, 705-714.	3.9	168
18	Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes. Cancer Discovery, 2020, 10, 942-963.	7.7	157

ANDREY KORSHUNOV

#	Article	IF	CITATIONS
19	H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers. Acta Neuropathologica, 2017, 134, 507-516.	3.9	144
20	Targeting Self-Renewal in High-Grade Brain Tumors Leads to Loss of Brain Tumor Stem Cells and Prolonged Survival. Cell Stem Cell, 2014, 15, 185-198.	5.2	123
21	Acyl-CoA-Binding Protein Drives Glioblastoma Tumorigenesis by Sustaining Fatty Acid Oxidation. Cell Metabolism, 2019, 30, 274-289.e5.	7.2	115
22	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.	7.7	104
23	Primary intracranial spindle cell sarcoma with rhabdomyosarcoma-like features share a highly distinct methylation profile and DICER1 mutations. Acta Neuropathologica, 2018, 136, 327-337.	3.9	104
24	Epithelioid Glioblastomas and Anaplastic Epithelioid Pleomorphic Xanthoastrocytomas—Same Entity or First Cousins?. Brain Pathology, 2016, 26, 215-223.	2.1	95
25	The molecular landscape of ETMR at diagnosis and relapse. Nature, 2019, 576, 274-280.	13.7	94
26	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	13.5	93
27	Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathology, 2018, 28, 656-662.	2.1	89
28	Isomorphic diffuse glioma is a morphologically and molecularly distinct tumour entity with recurrent gene fusions of MYBL1 or MYB and a benign disease course. Acta Neuropathologica, 2020, 139, 193-209.	3.9	83
29	A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of <i>EGFR</i> . Neuro-Oncology, 2021, 23, 34-43.	0.6	75
30	Methylation profiling of choroid plexus tumors reveals 3 clinically distinct subgroups. Neuro-Oncology, 2016, 18, 790-796.	0.6	67
31	Defective DNA damage repair leads to frequent catastrophic genomic events in murine and human tumors. Nature Communications, 2018, 9, 4760.	5.8	66
32	Comprehensive Analysis of Chromatin States in Atypical Teratoid/Rhabdoid Tumor Identifies Diverging Roles for SWI/SNF and Polycomb in Gene Regulation. Cancer Cell, 2019, 35, 95-110.e8.	7.7	65
33	Nonmetastatic Medulloblastoma of Early Childhood: Results From the Prospective Clinical Trial HIT-2000 and An Extended Validation Cohort. Journal of Clinical Oncology, 2020, 38, 2028-2040.	0.8	58
34	FGFR1:TACC1 fusion is a frequent event in molecularly defined extraventricular neurocytoma. Acta Neuropathologica, 2018, 136, 293-302.	3.9	56
35	The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clinical Cancer Research, 2019, 25, 1851-1866.	3.2	55
36	Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathologica, 2021, 141, 85-100.	3.9	52

#	Article	IF	CITATIONS
37	Molecular subgrouping of primary pineal parenchymal tumors reveals distinct subtypes correlated with clinical parameters and genetic alterations. Acta Neuropathologica, 2020, 139, 243-257.	3.9	50
38	ETMR: a tumor entity in its infancy. Acta Neuropathologica, 2020, 140, 249-266.	3.9	47
39	YAP1-fusions in pediatric NF2-wildtype meningioma. Acta Neuropathologica, 2020, 139, 215-218.	3.9	45
40	Papillary glioneuronal tumor (PGNT) exhibits a characteristic methylation profile and fusions involving PRKCA. Acta Neuropathologica, 2019, 137, 837-846.	3.9	43
41	Establishment and application of a novel patient-derived KIAA1549:BRAF-driven pediatric pilocytic astrocytoma model for preclinical drug testing. Oncotarget, 2017, 8, 11460-11479.	0.8	43
42	Telomere dysfunction and chromothripsis. International Journal of Cancer, 2016, 138, 2905-2914.	2.3	42
43	Routine RNA sequencing of formalin-fixed paraffin-embedded specimens in neuropathology diagnostics identifies diagnostically and therapeutically relevant gene fusions. Acta Neuropathologica, 2019, 138, 827-835.	3.9	42
44	Preclinical drug screen reveals topotecan, actinomycin D, and volasertib as potential new therapeutic candidates for ETMR brain tumor patients. Neuro-Oncology, 2017, 19, 1607-1617.	0.6	39
45	Comparative integrated molecular analysis of intraocular medulloepitheliomas and central nervous system embryonal tumors with multilayered rosettes confirms that they are distinct nosologic entities. Neuropathology, 2015, 33, 538-544.	0.7	38
46	Myxoid glioneuronal tumor of the septum pellucidum and lateral ventricle is defined by a recurrent PDGFRA p.K385 mutation and DNT-like methylation profile. Acta Neuropathologica, 2018, 136, 339-343.	3.9	37
47	Tumors diagnosed as cerebellar glioblastoma comprise distinct molecular entities. Acta Neuropathologica Communications, 2019, 7, 163.	2.4	37
48	Distinct Histomorphology in Molecular Subgroups of Glioblastomas in Young Patients. Journal of Neuropathology and Experimental Neurology, 2016, 75, 408-414.	0.9	35
49	CSF1R inhibition depletes tumor-associated macrophages and attenuates tumor progression in a mouse sonic Hedgehog-Medulloblastoma model. Oncogene, 2021, 40, 396-407.	2.6	35
50	Somatic mutations of <i>DICER1</i> and <i>KMT2D</i> are frequent in intraocular medulloepitheliomas. Genes Chromosomes and Cancer, 2016, 55, 418-427.	1.5	34
51	Lateral cerebellum is preferentially sensitive to high sonic hedgehog signaling and medulloblastoma formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3392-3397.	3.3	34
52	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	3.9	34
53	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	3.9	33
54	Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells. American Journal of Pathology, 2016, 186, 446-459.	1.9	32

ANDREY KORSHUNOV

#	Article	IF	CITATIONS
55	Telomerase activation in posterior fossa group A ependymomas is associated with dismal prognosis and chromosome 1q gain. Neuro-Oncology, 2017, 19, 1183-1194.	0.6	31
56	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	5.8	29
57	Intraocular Medulloepitheliomas and Embryonal Tumors With Multilayered Rosettes of the Brain: Comparative Roles of LIN28A and C19MC. American Journal of Ophthalmology, 2015, 159, 1065-1074.e1.	1.7	28
58	Intratumoral platelet aggregate formation in a murine preclinical glioma model depends on podoplanin expression on tumor cells. Blood Advances, 2019, 3, 1092-1102.	2.5	25
59	Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. Acta Neuropathologica, 2021, 142, 179-189.	3.9	24
60	Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B. Nature Communications, 2021, 12, 5530.	5.8	24
61	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	0.6	22
62	Differential nuclear <scp>ATRX</scp> expression in sarcomas. Histopathology, 2016, 68, 738-745.	1.6	19
63	Oligosarcomas, IDH-mutant are distinct and aggressive. Acta Neuropathologica, 2022, 143, 263-281.	3.9	18
64	Deep sequencing of WNT-activated medulloblastomas reveals secondary SHH pathway activation. Acta Neuropathologica, 2018, 135, 635-638.	3.9	17
65	GOPC:ROS1 and other ROS1 fusions represent a rare but recurrent drug target in a variety of glioma types. Acta Neuropathologica, 2021, 142, 1065-1069.	3.9	16
66	Quantification of telomere features in tumor tissue sections by an automated 3D imaging-based workflow. Methods, 2017, 114, 60-73.	1.9	15
67	Pediatric Targeted Therapy: Clinical Feasibility of Personalized Diagnostics in Children with Relapsed and Progressive Tumors. Brain Pathology, 2016, 26, 506-516.	2.1	14
68	A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers, 2021, 13, 230.	1.7	13
69	Accurate calling of <i>KIAA1549â€BRAF</i> fusions from DNA of human brain tumours using methylation arrayâ€based copy number and gene panel sequencing data. Neuropathology and Applied Neurobiology, 2021, 47, 406-414.	1.8	12
70	Molecular profiling of pediatric meningiomas shows tumor characteristics distinct from adult meningiomas. Acta Neuropathologica, 2021, 142, 873-886.	3.9	12
71	Pleomorphic xanthoastrocytoma is a heterogeneous entity with pTERT mutations prognosticating shorter survival. Acta Neuropathologica Communications, 2022, 10, 5.	2.4	12
72	Pilocytic astrocytoma demethylation and transcriptional landscapes link bZIP transcription factors to immune response. Neuro-Oncology, 2020, 22, 1327-1338.	0.6	10

ANDREY KORSHUNOV

#	Article	IF	CITATIONS
73	Posterior fossa pilocytic astrocytomas with oligodendroglial features show frequent FGFR1 activation via fusion or mutation. Acta Neuropathologica, 2020, 139, 403-406.	3.9	9
74	Spinal metastasis of gliosarcoma: Array-based comparative genomic hybridization for confirmation of metastatic spread. Journal of Clinical Neuroscience, 2014, 21, 1945-1950.	0.8	8
75	The age of adult pilocytic astrocytoma cells. Oncogene, 2021, 40, 2830-2841.	2.6	6
76	HIP1R and Vimentin immunohistochemistry predict 1p/19q status in IDH-mutant glioma. Neuro-Oncology, 2022, , .	0.6	4
77	Thrombospondin-1 mimetics are promising novel therapeutics for MYC-associated medulloblastoma. Neuro-Oncology Advances, 2021, 3, vdab002.	0.4	2
78	ETMR-06. Molecular and clinical characteristics of CNS tumors with <i>BCOR(L1</i>) fusion/internal tandem duplication. Neuro-Oncology, 2022, 24, i50-i50.	0.6	2
79	OTHR-41. Amplification of the PLAG family genes – PLAGL1 and PLAGL2 – is a key feature of a novel embryonal CNS tumor type. Neuro-Oncology, 2022, 24, i156-i156.	0.6	1
80	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i107-i107.	0.6	1
81	RARE-15. Astroblastoma, <i>MN1</i> altered comprises two molecularly and clinically distinct subgroups defined by the fusion partners <i>BEND2</i> and <i>CXXC5</i> . Neuro-Oncology, 2022, 24, i12-i13.	0.6	1
82	LGG-11. REGULATION OF ONCOGENE-INDUCED SENESCENCE IN PILOCYTIC ASTROCYTOMA. Neuro-Oncology, 2018, 20, i106-i106.	0.6	0
83	MODL-11. COMPARISON OF HUMAN & amp; MURINE PA/PXA CHARACTERISTICS. Neuro-Oncology, 2020, 22, iii413-iii413.	0.6	0
84	MBRS-68. SINGLE NUCLEUS RNA-SEQUENCING DECIPHERS INTRATUMORAL HETEROGENEITY IN MEDULLOBLASTOMA WITH EXTENSIVE NODULARITY (MBEN). Neuro-Oncology, 2020, 22, iii410-iii410.	0.6	0
85	MEDB-60. Medulloblastoma with extensive nodularity mimics cerebellar development and differentiates along the granular precursor lineage. Neuro-Oncology, 2022, 24, i120-i120.	0.6	0
86	OTHR-32. The Pediatric Targeted Therapy 2.0 registry: robust molecular diagnostics for precision oncology. Neuro-Oncology, 2022, 24, i154-i154.	0.6	0
87	MEDB-41. Identifying a subgroup of patients with early childhood sonic hedgehog-activated medulloblastoma with unfavorable prognosis after treatment with radiation-sparing regimens including intraventricular methotrexate. Neuro-Oncology, 2022, 24, i114-i115.	0.6	0
88	ATRT-10. Single-cell transcriptional profiling of ATRTs reveals heterogeneous signatures of tumor and non-malignant cell populations. Neuro-Oncology, 2022, 24, i4-i5.	0.6	0