Radan Huth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111531/publications.pdf

Version: 2024-02-01

218677 175258 2,906 63 26 52 citations h-index g-index papers 67 67 67 2567 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Classifications of Atmospheric Circulation Patterns. Annals of the New York Academy of Sciences, 2008, 1146, 105-152.	3.8	492
2	Cost733cat – A database of weather and circulation type classifications. Physics and Chemistry of the Earth, 2010, 35, 360-373.	2.9	290
3	<scp>VALUE</scp> : A framework to validate downscaling approaches for climate change studies. Earth's Future, 2015, 3, 1-14.	6.3	167
4	Statistical Downscaling of Daily Temperature in Central Europe. Journal of Climate, 2002, 15, 1731-1742.	3.2	161
5	AN INTERCOMPARISON OF COMPUTER-ASSISTED CIRCULATION CLASSIFICATION METHODS. International Journal of Climatology, 1996, 16, 893-922.	3.5	157
6	Development and comparison of circulation type classifications using the <scp>COST</scp> 733 dataset and software. International Journal of Climatology, 2016, 36, 2673-2691.	3.5	151
7	A GCM Simulation of Heat Waves, Dry Spells, and Their Relationships to Circulation. Climatic Change, 2000, 46, 29-60.	3.6	109
8	Sensitivity of Local Daily Temperature Change Estimates to the Selection of Downscaling Models and Predictors. Journal of Climate, 2004, 17, 640-652.	3.2	99
9	Solar modulation of Northern Hemisphere winter blocking. Journal of Geophysical Research, 2008, 113, .	3.3	81
10	Disaggregating climatic trends by classification of circulation patterns. International Journal of Climatology, 2001, 21, 135-153.	3.5	65
11	Is daily precipitation Gamma-distributed?. Atmospheric Research, 2009, 93, 759-766.	4.1	61
12	Time variations of the effects of circulation variability modes on European temperature and precipitation in winter. International Journal of Climatology, 2008, 28, 139-158.	3.5	54
13	Changes of atmospheric circulation in central Europe and their influence on climatic trends in the Czech Republic. Theoretical and Applied Climatology, 2009, 96, 57-68.	2.8	49
14	Synoptic-climatological applicability of circulation classifications from the COST733 collection: First results. Physics and Chemistry of the Earth, 2010, 35, 388-394.	2.9	49
15	Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the <scp>COST733</scp> catalogue. International Journal of Climatology, 2016, 36, 2743-2760.	3.5	47
16	The VALUE perfect predictor experiment: Evaluation of temporal variability. International Journal of Climatology, 2019, 39, 3786-3818.	3.5	47
17	Time Structure of Observed, GCM-Simulated, Downscaled, and Stochastically Generated Daily Temperature Series. Journal of Climate, 2001, 14, 4047-4061.	3.2	46
18	Climate impacts of the NAO are sensitive to how the NAO is defined. Theoretical and Applied Climatology, 2015, 119, 639-652.	2.8	43

#	Article	lF	Citations
19	Ein Beispiel f \tilde{A}^{1} /4r die Anwendung der Hauptkomponentenanalyse zur Auffindung von Zirkulationstypen \tilde{A}^{1} /4ber Europa. Meteorologische Zeitschrift, 1993, 2, 285-293.	1.0	41
20	Solar cycle effects on modes of low-frequency circulation variability. Journal of Geophysical Research, 2006, 111 , .	3.3	40
21	Continental-Scale Circulation in the UKHI GCM. Journal of Climate, 1997, 10, 1545-1561.	3.2	37
22	Non-linearity in statistical downscaling: does it bring an improvement for daily temperature in Europe?. International Journal of Climatology, 2008, 28, 465-477.	3.5	37
23	Simultaneous analysis of climatic trends in multiple variables: an example of application of multivariate statistical methods. International Journal of Climatology, 2005, 25, 469-484.	3.5	35
24	Synopticâ€climatological evaluation of the classifications of atmospheric circulation patterns over Europe. International Journal of Climatology, 2016, 36, 2710-2726.	3.5	35
25	Downscaling of humidity variables: a search for suitable predictors and predictands. International Journal of Climatology, 2005, 25, 243-250.	3.5	32
26	Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. International Journal of Climatology, 2017, 37, 2502-2521.	3.5	32
27	Weather categorization based on the average linkage clustering technique: An application to European mid-latitudes. International Journal of Climatology, 1993, 13, 817-835.	3.5	31
28	Comparative validation of statistical and dynamical downscaling models on a dense grid in central Europe: temperature. Theoretical and Applied Climatology, 2015, 120, 533-553.	2.8	28
29	Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment. International Journal of Climatology, 2019, 39, 3819-3845.	3.5	27
30	Circulation vs. climatic changes over the Czech Republic: A comprehensive study based on the COST733 database of atmospheric circulation classifications. Physics and Chemistry of the Earth, 2010, 35, 422-428.	2.9	26
31	Temperature trends in Europe: comparison of different data sources. Theoretical and Applied Climatology, 2020, 139, 1305-1316.	2.8	26
32	Classifications of Winter Euro-Atlantic Circulation Patterns: An Intercomparison of Five Atmospheric Reanalyses. Journal of Climate, 2017, 30, 7847-7861.	3.2	25
33	The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus, Series A: Dynamic Meteorology and Oceanography, 2006, 58, 121-130.	1.7	24
34	Enhanced lifetime of atmospheric circulation types over Europe: fact or fiction?. Tellus, Series A: Dynamic Meteorology and Oceanography, 2009, 61, 407-416.	1.7	23
35	The 11-year solar cycle affects the intensity and annularity of the Arctic Oscillation. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1095-1109.	1.6	22
36	Estimation of Missing Daily Temperatures: Can a Weather Categorization Improve Its Accuracy?. Journal of Climate, 1995, 8, 1901-1916.	3.2	20

3

#	Article	IF	CITATIONS
37	Long-term changes in precipitation phase in Europe in cold half year. Atmospheric Research, 2019, 227, 79-88.	4.1	19
38	Annual cycle of temperature trends in Europe, 1961–2000. Global and Planetary Change, 2018, 170, 146-162.	3.5	17
39	Trends in winter circulation over the British Isles and central Europe in twenty-first century projections by 25 CMIP5 GCMs. Climate Dynamics, 2019, 52, 1063-1075.	3.8	17
40	Climatology of low-level temperature inversions at the Prague-LibuÅ; aerological station. Theoretical and Applied Climatology, 2017, 127, 409-420.	2.8	16
41	Classifications of winter atmospheric circulation patterns: validation of CMIP5 GCMs over Europe and the North Atlantic. Climate Dynamics, 2019, 52, 3575-3598.	3.8	15
42	Title is missing!. Studia Geophysica Et Geodaetica, 2003, 47, 203-216.	0.5	10
43	Relationships between summer air masses and mortality in Seoul: Comparison of weather-type classifications. Physics and Chemistry of the Earth, 2010, 35, 536-543.	2.9	9
44	Circulationâ€type classifications in Europe: results of the <scp>COST</scp> 733 Action. International Journal of Climatology, 2016, 36, 2671-2672.	3.5	9
45	How to Recognize a True Mode of Atmospheric Circulation Variability. Earth and Space Science, 2021, 8, e2020EA001275.	2.6	9
46	Title is missing!. Studia Geophysica Et Geodaetica, 2003, 47, 863-873.	0.5	8
47	Asymmetry of day-to-day temperature changes and its causes. Theoretical and Applied Climatology, 2020, 140, 683-690.	2.8	8
48	Long-term changes in precipitation phase in Czechia. Geografie-Sbornik CGS, 2019, 124, 41-55.	0.6	7
49	Pacific centre of the Arctic Oscillation: product of high local variability rather than teleconnectivity. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 58, 601.	1.7	6
50	Evaluating heatâ€related mortality in Korea by objective classifications of â€~air masses'. International Journal of Climatology, 2010, 30, 1484-1501.	3.5	6
51	Parametric gridded weather generator for use in present and future climates: focus on spatial temperature characteristics. Theoretical and Applied Climatology, 2020, 139, 1031-1044.	2.8	6
52	Combined solar and QBO effects on the modes of low-frequency atmospheric variability in the Northern Hemisphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1471-1483.	1.6	5
53	Modes of Atmospheric Circulation Variability in the Northern Extratropics: A Comparison of Five Reanalyses. Journal of Climate, 2020, 33, 10707-10726.	3.2	4
54	Trends in intraseasonal temperature variability in Europe, 1961–2018. International Journal of Climatology, 2022, 42, 7298-7320.	3. 5	3

RADAN HUTH

#	Article	IF	Citations
55	A method for finding the station where climatic trends are most representative for a region. International Journal of Climatology, 2006, 26, 523-530.	3.5	2
56	Gridded Versus Station Temperatures: Time Evolution of Relationships With Atmospheric Circulation. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033254.	3.3	2
57	The applicability of the Hess–Brezowsky synoptic classification to the description of climate elements in Europe. Theoretical and Applied Climatology, 2020, 142, 1295-1309.	2.8	2
58	The mean energetic level. theory. Studia Geophysica Et Geodaetica, 1992, 36, 280-292.	0.5	1
59	The behaviour of the mean energetic level in time and space: Theoretical background and basic characteristics. Studia Geophysica Et Geodaetica, 1995, 39, 49-59.	0.5	1
60	Classifications of atmospheric circulation. Geografie-Sbornik CGS, 2016, 121, 300-323.	0.6	1
61	The behaviour of the mean energetic level in time and space: Persistence, autocorrelations, links to standard levels. Studia Geophysica Et Geodaetica, 1995, 39, 449-465.	0.5	0
62	The Development of Heat Health Watch Warning Systems for Five European Cities: Results From the European Union PHEWE Project. Epidemiology, 2006, 17, S86.	2.7	0
63	Temporal evolution of relationships between temperature and circulation modes in five reanalyses. International Journal of Climatology, 2022, 42, 4391-4404.	3.5	0