
Lutz Walter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111451/publications.pdf Version: 2024-02-01

Ι 1177 \λ/λι τερ

#	Article	IF	CITATIONS
1	Transcriptional and functional characterization of neonatal circulating Innate Lymphoid Cells. Stem Cells Translational Medicine, 2021, 10, 867-882.	1.6	16
2	Rhesus Macaque Activating Killer Immunoglobulin-Like Receptors Associate With Fc Receptor Gamma (FCER1G) and Not With DAP12 Adaptor Proteins Resulting in Stabilized Expression and Enabling Signal Transduction. Frontiers in Immunology, 2021, 12, 678964.	2.2	5
3	Genomic skimming and nanopore sequencing uncover cryptic hybridization in one of world's most threatened primates. Scientific Reports, 2021, 11, 17279.	1.6	13
4	Efficient In Vitro Generation of IL-22-Secreting ILC3 From CD34+ Hematopoietic Progenitors in a Human Mesenchymal Stem Cell Niche. Frontiers in Immunology, 2021, 12, 797432.	2.2	3
5	Nomenclature report on the major histocompatibility complex genes and alleles of the laboratory rat (Rattus norvegicus). Immunogenetics, 2020, 72, 5-8.	1.2	4
6	Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenetics, 2020, 72, 25-36.	1.2	17
7	Nomenclature report for killer-cell immunoglobulin-like receptors (KIR) in macaque species: new genes/alleles, renaming recombinant entities and IPD-NHKIR updates. Immunogenetics, 2020, 72, 37-47.	1.2	14
8	Butyrophilin-2A1 Directly Binds Germline-Encoded Regions of the Vγ9Vδ2 TCR and Is Essential for Phosphoantigen Sensing. Immunity, 2020, 52, 487-498.e6.	6.6	164
9	Editorial: Comparative Genetics of NK Cell Receptor Families in Relation to MHC Class I Ligands and Their Function. Frontiers in Immunology, 2020, 11, 561.	2.2	Ο
10	Umbilical cord blood-derived ILC1-like cells constitute a novel precursor for mature KIR+NKG2A- NK cells. ELife, 2020, 9, .	2.8	25
11	Characterization of Innate Lymphocytes in Cord Blood Reveals a Novel ILC1 Population with Natural Killer Cell Differentiation Potential. Stem Cells Translational Medicine, 2019, 8, S11-S11.	1.6	Ο
12	Glucocorticoid resistance of allogeneic T cells alters the gene expression profile in the inflamed small intestine of mice suffering from acute graft-versus-host disease. Journal of Steroid Biochemistry and Molecular Biology, 2019, 195, 105485.	1.2	7
13	Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biology, 2018, 19, 22.	3.8	62
14	ILâ€12 and ILâ€15 induce the expression of CXCR6 and CD49a on peripheral natural killer cells. Immunity, Inflammation and Disease, 2018, 6, 34-46.	1.3	66
15	Nomenclature for the KIR of non-human species. Immunogenetics, 2018, 70, 571-583.	1.2	15
16	Rat acute GvHD is Th1 driven and characterized by predominant donor CD4 + T-cell infiltration of skin and gut. Experimental Hematology, 2017, 50, 33-45.e3.	0.2	9
17	Diversification of both <i><scp>KIR</scp></i> and <i><scp>NKG</scp>2</i> natural killer cell receptor genes in macaques – implications for highly complex <scp>MHC</scp> â€dependent regulation of natural killer cells. Immunology, 2017, 150, 139-145.	2.0	18
18	Natural Killer Group 2D Ligand Depletion Reconstitutes Natural Killer Cell Immunosurveillance of Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology, 2017, 8, 387.	2.2	38

#	Article	IF	CITATIONS
19	Sustained virologic control in SIV ⁺ macaques after antiretroviral and α ₄ β ₇ antibody therapy. Science, 2016, 354, 197-202.	6.0	194
20	Comprehensive identification of genes driven by ERV9-LTRs reveals TNFRSF10B as a re-activatable mediator of testicular cancer cell death. Cell Death and Differentiation, 2016, 23, 64-75.	5.0	39
21	The Forgotten: Identification and Functional Characterization of MHC Class II Molecules H2-Eb2 and RT1-Db2. Journal of Immunology, 2016, 196, 988-999.	0.4	11
22	Distinct roles of T ell lymphopenia and the microbial flora for gastrointestinal and CNS autoimmunity. FASEB Journal, 2016, 30, 1724-1732.	0.2	10
23	The MICA-129Met/Val dimorphism affects plasma membrane expression and shedding of the NKG2D ligand MICA. Immunogenetics, 2016, 68, 109-123.	1.2	53
24	The MICAâ€129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Molecular Medicine, 2015, 7, 1480-1502.	3.3	81
25	MHC and KIR Polymorphisms in Rhesus Macaque SIV Infection. Frontiers in Immunology, 2015, 6, 540.	2.2	28
26	Human Induced Pluripotent Stem Cells Are Targets for Allogeneic and Autologous Natural Killer (NK) Cells and Killing Is Partly Mediated by the Activating NK Receptor DNAM-1. PLoS ONE, 2015, 10, e0125544.	1.1	48
27	Genetic Variation of the Major Histocompatibility Complex in Macaca mulatta and Macaca fascicularis. , 2015, , 37-51.		1
28	Immunogenetics of NK Cell Receptors and MHC Class I Ligands in Non-human Primates. , 2014, , 269-285.		1
29	In Vivo Administration of a JAK3 Inhibitor during Acute SIV Infection Leads to Significant Increases in Viral Load during Chronic Infection. PLoS Pathogens, 2014, 10, e1003929.	2.1	27
30	Progression to AIDS in SIV-Infected Rhesus Macaques is Associated with Distinct KIR and MHC class I Polymorphisms and NK Cell Dysfunction. Frontiers in Immunology, 2014, 5, 600.	2.2	27
31	Differentiated adaptive evolution, episodic relaxation of selective constraints, and pseudogenization of umami and sweet taste genes TAS1Rs in catarrhine primates. Frontiers in Zoology, 2014, 11, 79.	0.9	15
32	Targeting α4β7 integrin reduces mucosal transmission of simian immunodeficiency virus and protects gut-associated lymphoid tissue from infection. Nature Medicine, 2014, 20, 1397-1400.	15.2	134
33	Human-specific epigenetic variation in the immunological Leukotriene B4 Receptor (LTB4R/BLT1) implicated in common inflammatory diseases. Genome Medicine, 2014, 6, 19.	3.6	21
34	Vγ9 and VÎ′2 T cell antigen receptor genes and butyrophilin 3 (BTN3) emerged with placental mammals and are concomitantly preserved in selected species like alpaca (Vicugna pacos). Immunogenetics, 2014, 66, 243-254.	1.2	58
35	Towards the nonâ€invasive assessment of MHC genotype in wild primates: Analysis of wild assamese macaque <i>MHCâ€DRB</i> from fecal samples. American Journal of Primatology, 2014, 76, 230-238.	0.8	6

 $_{36}$ Genetic variation in the major histocompatibility complex of the European brown hare (Lepus) Tj ETQq0 0 0 rgBT /Qverlock 10 Tf 50 62 $^{-1.2}$

#	Article	IF	CITATIONS
37	Gibbon genome and the fast karyotype evolution of small apes. Nature, 2014, 513, 195-201.	13.7	320

38 Genomic Sequence Analysis of the MHC Class I G/F Segment in Common Marmoset (<i>Callithrix) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

39	Expression Patterns of Killer Cell Immunoglobulin-Like Receptors (KIR) of NK-Cell and T-Cell Subsets in Old World Monkeys. PLoS ONE, 2013, 8, e64936.	1.1	15
40	Human-specific CpG "beacons―identify loci associated with human-specific traits and disease. Epigenetics, 2012, 7, 1188-1199.	1.3	38
41	Characterisation of mouse monoclonal antibodies against rhesus macaque killer immunoglobulin-like receptors KIR3D. Immunogenetics, 2012, 64, 845-848.	1.2	9
42	Nomenclature report on the major histocompatibility complex genes and alleles of Great Ape, Old and New World monkey species. Immunogenetics, 2012, 64, 615-631.	1.2	82
43	Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 2011, 11, 77.	3.2	123
44	Sequence analysis of the grey mouse lemur (Microcebus murinus) MHC class II DQ and DR region. Immunogenetics, 2011, 63, 85-93.	1.2	17
45	Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus). Immunogenetics, 2011, 63, 485-499.	1.2	21
46	Rhesus macaque KIR bind human MHC class I with broad specificity and recognize HLA-C more effectively than HLA-A and HLA-B. Immunogenetics, 2011, 63, 577-585.	1.2	16
47	Genetic regulation of parasite infection: empirical evidence of the functional significance of an IL4 gene SNP on nematode infections in wild primates. Frontiers in Zoology, 2011, 8, 9.	0.9	5
48	Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey. Behavioral and Brain Functions, 2011, 7, 1.	1.4	69
49	Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Research, 2011, 39, 675-686.	6.5	276
50	Major Histocompatibility Complex Class-I-Interacting Natural Killer Cell Receptors of Nonhuman Primates. Journal of Innate Immunity, 2011, 3, 236-241.	1.8	9
51	Rhesus Macaque Inhibitory and Activating KIR3D Interact with Mamu-A–Encoded Ligands. Journal of Immunology, 2011, 186, 2156-2163.	0.4	32
52	Expression Profiling of Major Histocompatibility and Natural Killer Complex Genes Reveals Candidates for Controlling Risk of Graft versus Host Disease. PLoS ONE, 2011, 6, e16582.	1.1	14
53	Rhesus macaque MHC class I molecules show differential subcellular localizations. Immunogenetics, 2010, 62, 149-158.	1.2	20
54	Characterization of rhesus macaque KIR genotypes and haplotypes. Immunogenetics, 2010, 62, 281-293.	1.2	57

#	Article	IF	CITATIONS
55	Neuronal MHC Class I Molecules are Involved in Excitatory Synaptic Transmission at the Hippocampal Mossy Fiber Synapses of Marmoset Monkeys. Cellular and Molecular Neurobiology, 2010, 30, 827-839.	1.7	29
56	Mitochondrial evidence for multiple radiations in the evolutionary history of small apes. BMC Evolutionary Biology, 2010, 10, 74.	3.2	111
57	The endogenous danger signals HSP70 and MICA cooperate in the activation of cytotoxic effector functions of NK cells. Journal of Cellular and Molecular Medicine, 2010, 14, 992-1002.	1.6	36
58	Phylogeny and distribution of crested gibbons (genus <i>Nomascus</i>) based on mitochondrial cytochrome b gene sequence data. American Journal of Primatology, 2010, 72, 1047-1054.	0.8	44
59	A Small, Variable, and Irregular Killer Cell Ig-Like Receptor Locus Accompanies the Absence of <i>MHC-C</i> and <i>MHC-G</i> in Gibbons. Journal of Immunology, 2010, 184, 1379-1391.	0.4	38
60	Type 1 Diabetes in BioBreeding Rats Is Critically Linked to an Imbalance between Th17 and Regulatory T Cells and an Altered TCR Repertoire. Journal of Immunology, 2010, 185, 2285-2294.	0.4	47
61	A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates. PLoS Genetics, 2009, 5, e1000688.	1.5	64
62	Different subcellular localisations of TRIM22 suggest species-specific function. Immunogenetics, 2009, 61, 271-280.	1.2	18
63	Retropositional events consolidate the branching order among New World monkey genera. Molecular Phylogenetics and Evolution, 2009, 50, 507-513.	1.2	60
64	A PCRâ€based marker to simply identify <i>Saimiri sciureus</i> and <i>S. boliviensis boliviensis</i> . American Journal of Primatology, 2008, 70, 1177-1180.	0.8	12
65	Mitochondrial phylogeny, taxonomy and biogeography of the silvered langur species group (Trachypithecus cristatus). Molecular Phylogenetics and Evolution, 2008, 47, 629-636.	1.2	53
66	Phylogenetic position of the langur genera Semnopithecus and Trachypithecus among Asian colobines, and genus affiliations of their species groups. BMC Evolutionary Biology, 2008, 8, 58.	3.2	94
67	The Heat Shock Protein HSP70 Promotes Mouse NK Cell Activity against Tumors That Express Inducible NKG2D Ligands. Journal of Immunology, 2007, 179, 5523-5533.	0.4	128
68	Genomics and Diversity of the Common Marmoset Monkey NK Complex. Journal of Immunology, 2007, 178, 7151-7161.	0.4	19
69	Pas de deux: Natural Killer Receptors and MHC Class I Ligands in Primates. Current Genomics, 2007, 8, 51-57.	0.7	0
70	Molecular phylogeny and evolutionary history of Southeast Asian macaques forming the M. silenus group. Molecular Phylogenetics and Evolution, 2007, 42, 807-816.	1.2	89
71	Genotyping and segregation analyses indicate the presence of only two functional MIC genes in rhesus macaques. Immunogenetics, 2007, 59, 247-251.	1.2	15
72	A splice-supporting intronic mutation in the last bp position of a cryptic exon within intron 6 of the CYBB gene induces its incorporation into the mRNA causing chronic granulomatous disease (CGD). Gene, 2006, 371, 174-181.	1.0	22

#	Article	IF	CITATIONS
73	A novel discoidin domain receptor 1 (Ddr1) transcript is expressed in postmeiotic germ cells of the rat testis depending on the major histocompatibility complex haplotype. Gene, 2006, 372, 53-61.	1.0	19
74	Differential expression of major histocompatibility complex class I molecules in the brain of a New World monkey, the common marmoset (Callithrix jacchus). Journal of Neuroimmunology, 2006, 176, 39-50.	1.1	26
75	Molecular phylogeny and taxonomic revision of the sportive lemurs (Lepilemur, Primates). BMC Evolutionary Biology, 2006, 6, 17.	3.2	59
76	Comparative genomics of major histocompatibility complexes. Immunogenetics, 2005, 56, 683-695.	1.2	350
77	Considerable haplotypic diversity in the RT1-CE class I gene region of the rat major histocompatibility complex. Immunogenetics, 2005, 56, 773-777.	1.2	20
78	Comparative Genomics of Natural Killer Cell Receptor Gene Clusters. PLoS Genetics, 2005, 1, e27.	1.5	252
79	The Rat Expresses Two Complement Factor C4 Proteins, but Only One Isotype Is Expressed in the Liver. Journal of Immunology, 2005, 174, 970-975.	0.4	4
80	The Genomic Sequence and Comparative Analysis of the Rat Major Histocompatibility Complex. Genome Research, 2004, 14, 631-639.	2.4	108
81	Eberhard G�nther 1941?2004. Immunogenetics, 2004, 56, 467-469.	1.2	0
82	Comparative genomics of theMill family: a rapidly evolving MHC class I gene family. European Journal of Immunology, 2004, 34, 1597-1607.	1.6	19
83	Comparative and evolutionary analysis of the rhesus macaque extended MHC classÂll region. Immunogenetics, 2003, 54, 699-704.	1.2	10
84	Cytogenetic mapping and orientation of the rhesus macaque MHC. Cytogenetic and Genome Research, 2003, 103, 144-149.	0.6	7
85	Differential effect of acute and permanent heat shock protein 70 overexpression in tumor cells on lysability by cytotoxic T lymphocytes. Cancer Research, 2003, 63, 8212-20.	0.4	22
86	Identification, characterization and cytogenetic mapping of a yeast Vps54 homolog in rat and mouse. Gene, 2002, 285, 213-220.	1.0	12
87	Characterization and Phylogenetic Relationship of Prosimian MHC Class I Genes. Journal of Molecular Evolution, 2002, 55, 768-775.	0.8	15
88	MHC class I genes of the tree shrew Tupaia belangeri. Immunogenetics, 2002, 53, 984-988.	1.2	15
89	Physical mapping of the major histocompatibility complex class II and class III regions of the rat. Immunogenetics, 2002, 54, 268-275.	1.2	15
90	The major histocompatibility complex of the rat (Rattus norvegicus). Immunogenetics, 2001, 53, 520-542.	1.2	106

#	Article	IF	CITATIONS
91	Genomic analysis of MIC genes in rhesus macaques. Tissue Antigens, 2001, 58, 159-165.	1.0	17
92	Genomic and funtional aspects of the rat MHC, the RT1 complex. Immunological Reviews, 2001, 184, 82-95.	2.8	27
93	Physical Map and Expression Profile of Genes of the Telomeric Class I Gene Region of the Rat MHC. Journal of Immunology, 2001, 166, 3957-3965.	0.4	33
94	Partial cloning of the class I gene-encompassing regions in the rat major histocompatibility complex. Journal of Experimental Animal Science, 2000, 41, 91-94.	0.5	0
95	Physical mapping and evolution of the centromeric class I gene-containing region of the rat MHC. Immunogenetics, 2000, 51, 829-837.	1.2	38
96	Heat Shock Protein 70 Is Able to Prevent Heat Shock-Induced Resistance of Target Cells to CTL. Journal of Immunology, 2000, 164, 2362-2371.	0.4	31
97	Physical mapping of the class I regions of the rat major histocompatibility complex. , 2000, , 77-90.		1
98	Major histocompatibility complex-linked MIC genes in rhesus macaques and other primates. Immunogenetics, 1999, 50, 358-362.	1.2	19
99	Enhanced susceptibility to cytotoxic T lymphocytes without increase of MHC class I antigen expression after conditional overexpression of heat shock protein 70 in target cells. European Journal of Immunology, 1999, 29, 3925-3935.	1.6	28
100	Sequence analysis of the genomic interval between the Rps18 and RT1-A genes in the RT1u haplotype. Transplantation Proceedings, 1999, 31, 1513-1514.	0.3	2
101	Analysis of the 5′-flanking regions of the MHC-linked Hsp70-2 and Hsp70-3 genes of the rat. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1395, 57-61.	2.4	4
102	Isolation and molecular characterization of the rat MR1 homologue, a non-MHC-linked class I-related gene. Immunogenetics, 1998, 47, 477-482.	1.2	24
103	Identification of a Novel Highly Conserved Gene in the Centromeric Part of the Major Histocompatibility Complex. Genomics, 1998, 52, 298-304.	1.3	15
104	Cytogenetic orientation of the rat major histocompatibility complex (MHC) on chromosome 20. Immunogenetics, 1997, 47, 166-169.	1.2	20
105	Physical mapping of theRing1, Ring2, Ke6, Ke4, Rxrb, Col11a2, andRT1.Hb genes in the rat major histocompatibility complex. Immunogenetics, 1996, 44, 218-221.	1.2	20
106	Physical mapping of the Ring1, Ring2, Ke6, Ke4, Rxrb, Col11a2, and RT1.Hb genes in the rat major histocompatibility complex. Immunogenetics, 1996, 44, 218-221.	1.2	2
107	Genomic organization and sequence of the rat major histocompatibility complex class Ia gene RT1.A u. Immunogenetics, 1995, 41, 332.	1.2	22
108	Characterization and mapping of a highly conserved processed pseudogene and an intron-carrying gene of the heat shock cognate protein 70 (Hsc70) gene family in the rat. Mammalian Genome, 1995, 6, 602-606.	1.0	10

#	Article	IF	CITATIONS
109	Identification of a Novel Conserved Human Gene, TEGT. Genomics, 1995, 28, 301-304.	1.3	38
110	Comparative analysis of the three major histocompatibility complex-linked heat shock protein 70 (Hsp70) genes of the rat. Immunogenetics, 1994, 40, 325-330.	1.2	84
111	Genetic aspects of the hsp70 multigene family in vertebrates. Experientia, 1994, 50, 987-1001.	1.2	102
112	A novel, conserved gene of the rat that is developmentally regulated in the testis. Mammalian Genome, 1994, 5, 216-221.	1.0	37
113	Sequence, expression, and mapping of a rat Mhc class I b gene. Immunogenetics, 1994, 39, 351-4.	1.2	18