

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111267/publications.pdf Version: 2024-02-01

Roli

#	Article	IF	CITATIONS
1	Accurately Localizing Multiple Nanoparticles in a Multishelled Matrix Through Shellâ€to ore Evolution for Maximizing Energy‧torage Capability. Advanced Materials, 2022, 34, e2200206.	11.1	32
2	Coating conductive polypyrrole layers on multiple shells of hierarchical SnO2 spheres and their enhanced cycling stability as lithium-ion battery anode. Applied Surface Science, 2022, 586, 152836.	3.1	21
3	Ultrafast assembly and healing of nanomaterial networks on polymer substrates for flexible hybrid electronics. Applied Materials Today, 2021, 22, 100956.	2.3	7
4	Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions. Nano Letters, 2021, 21, 8340-8347.	4.5	12
5	Characterizing intermolecular interactions in redox-active pyridinium-based molecular junctions. Journal of Electroanalytical Chemistry, 2020, 875, 114070.	1.9	13
6	Fluid-Assisted Sorted Assembly of Graphene on Polymer. Langmuir, 2020, 36, 5608-5617.	1.6	3
7	In Situ Photophysical Characterization of π-Conjugated Oligopeptides Assembled via Continuous Flow Processing. Langmuir, 2019, 35, 10947-10957.	1.6	1
8	Engineering Halide Perovskite Crystals through Precursor Chemistry. Small, 2019, 15, e1903613.	5.2	82
9	Charge Transport and Quantum Interference Effects in Oxazole-Terminated Conjugated Oligomers. Journal of the American Chemical Society, 2019, 141, 16079-16084.	6.6	31
10	Organic Templates for Inorganic Nanocrystal Growth. Energy and Environmental Materials, 2019, 2, 38-54.	7.3	21
11	Solubility and activity of a phosphinosulfonate palladium catalyst in water with different surfactants. Polymer Chemistry, 2019, 10, 1988-1992.	1.9	2
12	Intrachain Charge Transport through Conjugated Donor–Acceptor Oligomers. ACS Applied Electronic Materials, 2019, 1, 7-12.	2.0	25
13	Convenient and Robust Route to Photoswitchable Hierarchical Liquid Crystal Polymer Stripes via Flow-Enabled Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 4961-4970.	4.0	29
14	Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€Ion Batteries. Angewandte Chemie, 2017, 129, 1895-1898.	1.6	26
15	Polymerâ€Templated Formation of Polydopamineâ€Coated SnO ₂ Nanocrystals: Anodes for Cyclable Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2017, 56, 1869-1872.	7.2	260
16	Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution. ACS Applied Materials & Interfaces, 2017, 9, 3977-3984.	4.0	26
17	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie - International Edition, 2017, 56, 4554-4559.	7.2	38
18	Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly. Angewandte Chemie, 2017, 129, 4625-4630.	1.6	4

Bo Li

#	Article	IF	CITATIONS
19	Titelbild: Harnessing Colloidal Crack Formation by Flowâ€Enabled Selfâ€Assembly (Angew. Chem. 16/2017). Angewandte Chemie, 2017, 129, 4429-4429.	1.6	2
20	Concentration-Driven Assembly and Sol–Gel Transition of π-Conjugated Oligopeptides. ACS Central Science, 2017, 3, 986-994.	5.3	28
21	Macroscopic Alignment and Assembly of π-Conjugated Oligopeptides Using Colloidal Microchannels. ACS Applied Materials & Interfaces, 2017, 9, 41586-41593.	4.0	13
22	Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nature Communications, 2017, 8, 16045.	5.8	359
23	Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nature Nanotechnology, 2016, 11, 633-638.	15.6	292
24	A facile and low-cost route to high-aspect-ratio microstructures on silicon via a judicious combination of flow-enabled self-assembly and metal-assisted chemical etching. Journal of Materials Chemistry C, 2016, 4, 8953-8961.	2.7	9
25	<i>In-Situ</i> Crafting of ZnFe ₂ O ₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials. ACS Nano, 2016, 10, 2728-2735.	7.3	192
26	A low-cost fabrication route for silicon microchannels and microgratings with flow-enabled polymer self-assembly patterning and wet etching. , 2015, , .		0
27	Flowâ€Enabled Selfâ€Assembly of Largeâ€Scale Aligned Nanowires. Angewandte Chemie - International Edition, 2015, 54, 4250-4254.	7.2	65
28	Unconventional seed-mediated growth of ultrathin Au nanowires in aqueous solution. Chemical Science, 2015, 6, 6349-6354.	3.7	23
29	Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor. Nanoscale, 2015, 7, 9731-9737.	2.8	10
30	Organic–Inorganic Nanocomposites via Placing Monodisperse Ferroelectric Nanocrystals in Direct and Permanent Contact with Ferroelectric Polymers. Journal of the American Chemical Society, 2015, 137, 11760-11767.	6.6	111
31	Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO ₂ Interface in Quantum Dotâ€5ensitized Solar Cells. Particle and Particle Systems Characterization, 2015, 32, 80-90.	1.2	33
32	Directing Convection to Pattern Thin Polymer Films: Coffee Rings. , 2015, , 43-71.		1
33	High-speed atomic force microscope imaging: Adaptive multiloop mode. Physical Review E, 2014, 90, 012405.	0.8	19
34	Robust Route to Unimolecular Core–Shell and Hollow Polymer Nanoparticles. Chemistry of Materials, 2014, 26, 6058-6067.	3.2	42
35	Crafting Threads of Diblock Copolymer Micelles <i>via</i> Flow-Enabled Self-Assembly. ACS Nano, 2014, 8, 2936-2942.	7.3	89
36	Variance of Particle Size: Another Monitor to Evaluate Abrasive Wear. Tribology Letters, 2014, 55, 465-472.	1.2	7

Bo Li

#	Article	IF	CITATIONS
37	Adaptive Multi-Loop Mode Atomic Force Microscope Imaging. , 2014, , .		Ο
38	An Unconventional Route to Hierarchically Ordered Block Copolymers on a Gradient Patterned Surface through Controlled Evaporative Selfâ€Assembly. Angewandte Chemie - International Edition, 2013, 52, 1122-1127.	7.2	56
39	Largeâ€Scale Hierarchically Structured Conjugated Polymer Assemblies with Enhanced Electrical Conductivity. Angewandte Chemie - International Edition, 2013, 52, 2564-2568.	7.2	79
40	Macroscopic Highly Aligned DNA Nanowires Created by Controlled Evaporative Self-Assembly. ACS Nano, 2013, 7, 4326-4333.	7.3	63
41	Drying-Mediated Assembly of Colloidal Nanoparticles into Large-Scale Microchannels. ACS Nano, 2013, 7, 6079-6085.	7.3	64
42	A Simple Route to Hierarchically Assembled Micelles and Inorganic Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 12588-12592.	7.2	50
43	A novel rapid prototyping system for expandable polystyrene. Rapid Prototyping Journal, 2011, 17, 17-27.	1.6	4
44	Guided Organization of <i>λ</i> â€ÐNA into Microring Arrays from Liquid Capillary Bridges. Small, 2011, 7, 1641-1646.	5.2	21
45	Kinetics of Surface Nanocrystallization for Hadfield Steel in Shot Peening. Advanced Science Letters, 2011, 4, 1862-1866.	0.2	1
46	Computer simulation of the two-body abrasion process modeling the particle as a paraboloid of revolution. Journal of Materials Processing Technology, 2009, 209, 6124-6133.	3.1	8
47	Movement patterns of ellipsoidal particle in abrasive flow machining. Journal of Materials Processing Technology, 2009, 209, 6048-6056.	3.1	30
48	Nanostructure Dependence of Field-Effect Mobility in Regioregular Poly(3-hexylthiophene) Thin Film Field Effect Transistors. Journal of the American Chemical Society, 2006, 128, 3480-3481.	6.6	439