List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111212/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 2006, 6, 288-295.	1.7	12,505
2	GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics, 2012, 28, 2537-2539.	1.8	10,741
3	Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity, 1999, 82, 561-573.	1.2	994
4	RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theoretical and Applied Genetics, 1993, 86, 927-934.	1.8	708
5	SPATIAL AUTOCORRELATION ANALYSIS OFFERS NEW INSIGHTS INTO GENE FLOW IN THE AUSTRALIAN BUSH RAT, RATTUS FUSCIPES. Evolution; International Journal of Organic Evolution, 2003, 57, 1182-1195.	1.1	447
6	Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution, 1998, 15, 1275-1287.	3.5	382
7	Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss <i>Buchloë dactyloides</i> . Molecular Ecology, 1995, 4, 135-148.	2.0	357
8	The Chemistry of Sexual Deception in an Orchid-Wasp Pollination System. Science, 2003, 302, 437-438.	6.0	298
9	Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Annals of Botany, 2014, 113, 199-212.	1.4	260
10	How does ecological disturbance influence genetic diversity?. Trends in Ecology and Evolution, 2013, 28, 670-679.	4.2	203
11	Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Molecular Ecology Resources, 2009, 9, 673-690.	2.2	202
12	Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive <i>Chiloglottis</i> orchids: implications for pollinatorâ€driven speciation. New Phytologist, 2010, 188, 437-450.	3.5	188
13	Comparative analysis of genetic diversity in the mangrove species Avicennia marina (Forsk.) Vierh. (Avicenniaceae) detected by AFLPs and SSRs. Theoretical and Applied Genetics, 2002, 104, 388-398.	1.8	172
14	Responses of Male Zaspilothynnus trilobatus Turner Wasps to Females and the Sexually Deceptive Orchid it Pollinates. Functional Ecology, 1990, 4, 159.	1.7	169
15	Evaluation of the Contribution of Genetic Research to the Management of the Endangered Plant Zieria prostrata. Conservation Biology, 1999, 13, 514-522.	2.4	165
16	A heterogeneity test for fineâ€scale genetic structure. Molecular Ecology, 2008, 17, 3389-3400.	2.0	164
17	Genetic spatial autocorrelation can readily detect sexâ€biased dispersal. Molecular Ecology, 2012, 21, 2092-2105.	2.0	163
18	DISPERSAL, PHILOPATRY, AND INFIDELITY: DISSECTING LOCAL GENETIC SWTRUCTURE IN SUPERB FAIRY-WRENS (MALURS CYANEUS). Evolution; International Journal of Organic Evolution, 2005, 59, 625-635.	1.1	157

#	Article	IF	CITATIONS
19	Dispersal, philopatry, and infidelity: dissecting local genetic structure in superb fairy-wrens (Malurus) Tj ETQq1	1 0.784314 1.1	$rg_{154}^{\text{BT}}/\text{Overlow}$
20	DOES SELECTION ON FLORAL ODOR PROMOTE DIFFERENTIATION AMONG POPULATIONS AND SPECIES OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS?. Evolution; International Journal of Organic Evolution, 2005, 59, 1449-1463.	1.1	140
21	ECOLOGICAL AND GENETIC CONSEQUENCES OF POLLINATION BY SEXUAL DECEPTION IN THE ORCHID <i>CALADENIA TENTACTULATA</i> . Evolution; International Journal of Organic Evolution, 1996, 50, 2207-2220.	1.1	128
22	Inference of higher-order conifer relationships from a multi-locus plastid data setThis paper is one of a selection of papers published in the Special Issue on Systematics Research Botany, 2008, 86, 658-669.	0.5	116
23	Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: implications for forensic investigations. Forensic Science International, 2003, 131, 65-74.	1.3	104
24	Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Molecular Ecology, 1998, 7, 87-93.	2.0	103
25	New perspectives on the evolution of plant mating systems. Annals of Botany, 2012, 109, 493-503.	1.4	99
26	Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Molecular Ecology, 2003, 12, 2331-2343.	2.0	97
27	Implications of pollination by food and sexual deception for pollinator specificity, fruit set, population genetics and conservation of Caladenia (Orchidaceae). Australian Journal of Botany, 2009, 57, 287.	0.3	93
28	Discovery of pyrazines as pollinator sex pheromones and orchid semiochemicals: implications for the evolution of sexual deception. New Phytologist, 2014, 203, 939-952.	3.5	93
29	Breeding system, genetic diversity and clonal structure in the sub-alpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biological Conservation, 2002, 106, 71-78.	1.9	92
30	A PHYLOGENETIC STUDY OF POLLINATOR CONSERVATISM AMONG SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2002, 56, 888-898.	1.1	92
31	POLLINATORS DISCRIMINATE AMONG FLORAL HEIGHTS OF A SEXUALLY DECEPTIVE ORCHID: IMPLICATIONS FOR SELECTION. Evolution; International Journal of Organic Evolution, 1993, 47, 1681-1687.	1.1	89
32	Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers. Marine Biology, 2000, 136, 207-216.	0.7	87
33	A new technique for monitoring pollen flow in orchids. Oecologia, 1989, 79, 361-365.	0.9	85
34	Pollination by sexual deception — it takes chemistry to work. Current Opinion in Plant Biology, 2016, 32, 37-46.	3.5	84
35	THE GENETIC CONSEQUENCES OF WORKER ANT POLLINATION IN A SELFâ€COMPATIBLE, CLONAL ORCHID. Evolution; International Journal of Organic Evolution, 1991, 45, 1837-1848.	1.1	83
36	Ecological and Genetic Consequences of Pollination by Sexual Deception in the Orchid Caladenia tentactulata. Evolution; International Journal of Organic Evolution, 1996, 50, 2207.	1.1	82

#	Article	IF	CITATIONS
37	Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Molecular Ecology, 1999, 8, 1239-1246.	2.0	82
38	Niche Perspectives on Plant–Pollinator Interactions. Trends in Plant Science, 2020, 25, 779-793.	4.3	82
39	Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Annals of Botany, 2014, 113, 629-641.	1.4	77
40	The unique pollination ofLeporella fimbriata (Orchidaceae): Pollination by pseudocopulating male ants (Myrmecia urens, Formicidae). Plant Systematics and Evolution, 1989, 167, 137-148.	0.3	76
41	Floral odour chemistry defines species boundaries and underpins strong reproductive isolation in sexually deceptive orchids. Annals of Botany, 2014, 113, 341-355.	1.4	74
42	Low population genetic differentiation in the <scp>O</scp> rchidaceae: implications for the diversification of the family. Molecular Ecology, 2012, 21, 5208-5220.	2.0	73
43	DNA profiling techniques for plant variety identification. Australian Journal of Experimental Agriculture, 1995, 35, 807.	1.0	71
44	The discovery of 2,5-dialkylcyclohexan-1,3-diones as a new class of natural products. Proceedings of the United States of America, 2009, 106, 8877-8882.	3.3	70
45	A Simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Molecular Ecology, 2000, 9, 815-816.	2.0	67
46	Complex Sexual Deception in an Orchid Is Achieved by Co-opting Two Independent Biosynthetic Pathways for Pollinator Attraction. Current Biology, 2017, 27, 1867-1877.e5.	1.8	67
47	POLLINATOR SPECIFICITY DRIVES STRONG PREPOLLINATION REPRODUCTIVE ISOLATION IN SYMPATRIC SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2014, 68, 1561-1575.	1.1	65
48	Marker-Based Quantitative Genetics in the Wild?: The Heritability and Genetic Correlation of Chemical Defenses in Eucalyptus. Genetics, 2005, 171, 1989-1998.	1.2	64
49	Integrating floral scent, pollination ecology and population genetics. Functional Ecology, 2009, 23, 863-874.	1.7	64
50	Social constraint and an absence of sexâ€biased dispersal drive fineâ€scale genetic structure in whiteâ€winged choughs. Molecular Ecology, 2008, 17, 4346-4358.	2.0	63
51	A narrow group of monophyletic <i>Tulasnella</i> (Tulasnellaceae) symbiont lineages are associated with multiple species of <i>Chiloglottis</i> (Orchidaceae): Implications for orchid diversity. American Journal of Botany, 2010, 97, 1313-1327.	0.8	63
52	Specialized ecological interactions and plant species rarity: The role of pollinators and mycorrhizal fungi across multiple spatial scales. Biological Conservation, 2014, 169, 285-295.	1.9	63
53	Orchid conservation: from theory to practice. Annals of Botany, 2020, 126, 345-362.	1.4	63
54	Pseudocopulation of an orchid by male ants: a test of two hypotheses accounting for the rarity of ant pollination. Oecologia, 1987, 73, 522-524.	0.9	62

#	Article	IF	CITATIONS
55	Organelle DNA haplotypes reflect crop-use characteristics and geographic origins of Cannabis sativa. Forensic Science International, 2007, 172, 179-190.	1.3	59
56	Speciation in the Orchidaceae: confronting the challenges. Molecular Ecology, 2007, 16, 2834-2837.	2.0	58
57	A new set of universal <i>de novo</i> sequencing primers for extensive coverage of noncoding chloroplast DNA: new opportunities for phylogenetic studies and cpSSR discovery. Molecular Ecology Resources, 2009, 9, 777-783.	2.2	56
58	The Discovery of 2-Hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine: A Semiochemical in Orchid Pollination. Organic Letters, 2012, 14, 2576-2578.	2.4	53
59	Two orchids attract different pollinators with the same floral odour compound: ecological and evolutionary implications. Functional Ecology, 2005, 19, 674-680.	1.7	52
60	SPATIAL DISTRIBUTION OF DEFENSE CHEMICALS AND MARKERS AND THE MAINTENANCE OF CHEMICAL VARIATION. Ecology, 2007, 88, 716-728.	1.5	52
61	Isolation of microsatellite markers in Cannabis sativa L. (marijuana). Molecular Ecology Notes, 2003, 3, 105-107.	1.7	50
62	Discovery of Tetrasubstituted Pyrazines As Semiochemicals in a Sexually Deceptive Orchid. Journal of Natural Products, 2012, 75, 1589-1594.	1.5	49
63	A molecular identification system for grasses: a novel technology for forensic botany. Forensic Science International, 2005, 152, 121-131.	1.3	48
64	Converting quadratic entropy to diversity: Both animals and alleles are diverse, but some are more diverse than others. PLoS ONE, 2017, 12, e0185499.	1.1	48
65	Pollination of the Orchid Microtis parviflora R. Br. by Flightless Worker Ants. Functional Ecology, 1989, 3, 515.	1.7	47
66	An informational diversity framework, illustrated with sexually deceptive orchids in early stages of speciation. Molecular Ecology Resources, 2015, 15, 1375-1384.	2.2	47
67	Developmental Validation of a <i>Cannabis sativa</i> STR Multiplex System for Forensic Analysis. Journal of Forensic Sciences, 2008, 53, 1061-1067.	0.9	46
68	Chemical communication in the sexually deceptive orchid genus Cryptostylis. Botanical Journal of the Linnean Society, 2004, 144, 199-205.	0.8	45
69	Mark-recapture by genetic tagging reveals restricted movements by bush rats (Rattus fuscipes) in a fragmented landscape. Journal of Zoology, 2006, 268, 207-216.	0.8	44
70	Not all types of host contacts are equal when it comes to <i>E. coli</i> transmission. Ecology Letters, 2014, 17, 970-978.	3.0	44
71	Does selection on floral odor promote differentiation among populations and species of the sexually deceptive orchid genus Ophrys?. Evolution; International Journal of Organic Evolution, 2005, 59, 1449-63.	1.1	44
72	Genetic insights into population recovery following experimental perturbation in a fragmented landscape. Biological Conservation, 2006, 132, 520-532.	1.9	43

#	Article	IF	CITATIONS
73	Congruent species delineation of <i><scp>T</scp>ulasnella</i> using multiple loci and methods. New Phytologist, 2014, 201, 6-12.	3.5	42
74	A <i>Cannabis sativa</i> STR Genotype Database for Australian Seizures: Forensic Applications and Limitations*. Journal of Forensic Sciences, 2009, 54, 556-563.	0.9	41
75	Does morphology matter? An explicit assessment of floral morphology in sexual deception. Functional Ecology, 2016, 30, 537-546.	1.7	40
76	Does ant dispersal of seeds in Sclerolaena diacantha (Chenopodiaceae) generate local spatial genetic structure?. Heredity, 1995, 75, 351-361.	1.2	38
77	Genetic evidence for cooperative polyandry in reverse dichromatic Eclectus parrots. Animal Behaviour, 2007, 74, 1047-1054.	0.8	38
78	Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids. Journal of Evolutionary Biology, 2017, 30, 1674-1691.	0.8	38
79	A mark-recapture study of male Colletes cunicularius bees: implications for pollination by sexual deception. Behavioral Ecology and Sociobiology, 2004, 56, 579-584.	0.6	37
80	A Grass Molecular Identification System for Forensic Botany: A Critical Evaluation of the Strengths and Limitations*. Journal of Forensic Sciences, 2009, 54, 1254-1260.	0.9	37
81	Confirmation of the Hybrid Origin of Chiloglottis × pescottiana (Orchidaceae: Diurideae). I. Genetic and Morphometric Evidence. Australian Journal of Botany, 1997, 45, 839.	0.3	36
82	New species of Tulasnella associated with terrestrial orchids in Australia. IMA Fungus, 2017, 8, 28-47.	1.7	36
83	Convergent specialization $\hat{a} \in $ the sharing of pollinators by sympatric genera of sexually deceptive orchids. Journal of Ecology, 2013, 101, 826-835.	1.9	35
84	Pollinators Discriminate among Floral Heights of a Sexually Deceptive Orchid: Implications for Selection. Evolution; International Journal of Organic Evolution, 1993, 47, 1681.	1.1	33
85	Genetic, cytogenetic and morphological patterns in a mixed mulga population: evidence for apomixis. Australian Systematic Botany, 2003, 16, 69.	0.3	33
86	The recovery of populations of bush rat Rattus fuscipes in forest fragments following major population reduction. Journal of Applied Ecology, 2005, 42, 649-658.	1.9	33
87	The Genetic Consequences of Worker Ant Pollination in a Self-Compatible, Clonal Orchid. Evolution; International Journal of Organic Evolution, 1991, 45, 1837.	1.1	32
88	The Biosynthesis of Unusual Floral Volatiles and Blends Involved in Orchid Pollination by Deception: Current Progress and Future Prospects. Frontiers in Plant Science, 2017, 8, 1955.	1.7	32
89	The production of a key floral volatile is dependent on UV light in a sexually deceptive orchid. Annals of Botany, 2013, 111, 21-30.	1.4	31
90	The Spider Orchid <i>Caladenia crebra</i> Produces Sulfurous Pheromone Mimics to Attract its Male Wasp Pollinator. Angewandte Chemie - International Edition, 2017, 56, 8455-8458.	7.2	31

#	Article	IF	CITATIONS
91	The Impact of Landscape Disturbance on Spatial Genetic Structure in the Guanacaste Tree, Enterolobium cyclocarpum (Fabaceae). Journal of Heredity, 2010, 101, 133-143.	1.0	30
92	Pollinator rarity as a threat to a plant with a specialized pollination system. Botanical Journal of the Linnean Society, 2015, 179, 511-525.	0.8	30
93	The absence of sex-biased dispersal in the cooperatively breeding grey-crowned babbler. Journal of Animal Ecology, 2011, 80, 69-78.	1.3	29
94	The significance of ant and plant traits for ant pollination in Leporella fimbriata. Oecologia, 1990, 84, 457-460.	0.9	28
95	Thynnine wasps discriminate among heights when seeking mates: tests with a sexually deceptive orchid. Oecologia, 1993, 95, 241-245.	0.9	28
96	Pheromones and analogs from Neozeleboria wasps and the orchids that seduce them: a versatile synthesis of 2,5-dialkylated 1,3-cyclohexanediones. Tetrahedron Letters, 2008, 49, 2446-2449.	0.7	28
97	Outcrossing in an ant pollinated clonal orchid. Heredity, 1989, 62, 161-167.	1.2	27
98	Molecular genetic analysis and ecological evidence reveals multiple cryptic species among thynnine wasp pollinators of sexually deceptive orchids. Molecular Phylogenetics and Evolution, 2011, 59, 195-205.	1.2	27
99	Ecological and genetic evidence for cryptic ecotypes in a rare sexually deceptive orchid, <i>Drakaea elastica</i> . Botanical Journal of the Linnean Society, 2015, 177, 124-140.	0.8	27
100	Sex ratio bias and shared paternity reduce individual fitness and population viability in a critically endangered parrot. Journal of Animal Ecology, 2019, 88, 502-510.	1.3	27
101	Achieving practical outcomes from genetic studies of rare Australian plants. Australian Journal of Botany, 2000, 48, 375.	0.3	26
102	Specific pollinator attraction and the diversification of sexually deceptive Chiloglottis (Orchidaceae). Plant Systematics and Evolution, 2005, 253, 185-200.	0.3	26
103	An Evaluation of the AFLP Fingerprinting Technique for the Analysis of Paternity in Natural Populations of Persoonia mollis (Proteaceae). Australian Journal of Botany, 1998, 46, 533.	0.3	25
104	Phylogeography of pollinator-specific sexually deceptive Chiloglottis taxa (Orchidaceae): evidence for sympatric divergence?. Molecular Ecology, 2005, 14, 3067-3076.	2.0	24
105	High temporal variability in commensal <i><scp>E</scp>scherichia coli</i> strain communities of a herbivorous marsupial. Environmental Microbiology, 2013, 15, 2162-2172.	1.8	24
106	Pollination by sexual deception of fungus gnats (Keroplatidae and Mycetophilidae) in two clades of Pterostylis (Orchidaceae). Botanical Journal of the Linnean Society, 2019, 190, 101-116.	0.8	22
107	A comprehensive and userâ€friendly framework for 3Dâ€data visualisation in invertebrates and other organisms. Journal of Morphology, 2019, 280, 223-231.	0.6	22
108	The Tumut experiment – integrating demographic and genetic studies to unravel fragmentation effects: a case study of the native bush rat. , 2000, , 173-202.		21

#	Article	IF	CITATIONS
109	Socio-seasonal changes in scent-marking habits in the carnivorous marsupial Dasyurus maculatus at communal latrines. Australian Journal of Zoology, 2010, 58, 317.	0.6	21
110	Experimental examination of pollinator-mediated selection in a sexually deceptive orchid. Annals of Botany, 2018, 123, 347-354.	1.4	21
111	Unburnt habitat patches are critical for survival and in situ population recovery in a small mammal after fire. Journal of Applied Ecology, 2021, 58, 1325-1335.	1.9	21
112	Short-term but not long-term patch avoidance in an orchid-pollinating solitary wasp. Behavioral Ecology, 2013, 24, 162-168.	1.0	20
113	Pyrazines Attract Catocheilus Thynnine Wasps. Insects, 2014, 5, 474-487.	1.0	20
114	INBREEDING AVOIDANCE AND THE EVOLUTION OF GENDER DIMORPHISM IN WURMBEA BIGLANDULOSA (COLCHICACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 529-537.	1.1	19
115	An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Current Biology, 2021, 31, 1954-1961.e7.	1.8	19
116	Conservation of taxonomically difficult species: the case of the Australian orchid, Microtis angusii. Conservation Genetics, 2006, 7, 847-859.	0.8	18
117	Low levels of genetic differentiation characterize Australian humpback whale (<i>Megaptera) Tj ETQq1 1 0.7843</i>	814 rgBT / 0.9	Overlock 10
118	Weeds, as ancillary hosts, pose disproportionate risk for virulent pathogen transfer to crops. BMC Evolutionary Biology, 2016, 16, 101.	3.2	18
119	Exploring dispersal barriers using landscape genetic resistance modelling in scarlet macaws of the Peruvian Amazon. Landscape Ecology, 2017, 32, 445-456.	1.9	18
120	Tissue-Specific Floral Transcriptome Analysis of the Sexually Deceptive Orchid Chiloglottis trapeziformis Provides Insights into the Biosynthesis and Regulation of Its Unique UV-B Dependent Floral Volatile, Chiloglottone 1. Frontiers in Plant Science, 2017, 8, 1260.	1.7	18
121	Mate-Searching Behaviour of Common and Rare Wasps and the Implications for Pollen Movement of the Sexually Deceptive Orchids They Pollinate. PLoS ONE, 2013, 8, e59111.	1.1	18
122	Field-based evaluation of scat DNA methods to estimate population abundance of the spotted-tailed quoll (Dasyurus maculatus), a rare Australian marsupial. Wildlife Research, 2009, 36, 721.	0.7	17
123	Advancement to hair-sampling surveys of a medium-sized mammal: DNA-based individual identification and population estimation of a rare Australian marsupial, the spotted-tailed quoll (Dasyurus) Tj ETQq1 1 0.7843	14 œ18T /(Dvenløck 10 Ti
124	Pollination by sexual deception promotes outcrossing and mate diversity in self ompatible clonal orchids. Journal of Evolutionary Biology, 2015, 28, 1526-1541.	0.8	17
125	The effect of sexâ€biased dispersal on oppositeâ€sexed spatial genetic structure and inbreeding risk. Molecular Ecology, 2015, 24, 1681-1695.	2.0	17
126	Evaluating multilocus Bayesian species delimitation for discovery of cryptic mycorrhizal diversity. Fungal Ecology, 2017, 26, 74-84.	0.7	17

#	ARTICLE	IF	CITATIONS
127	Bioclimatic assessment of the geographic and climatic limits to hybridisation in a sexually deceptive orchid system. Australian Journal of Botany, 2002, 50, 21.	0.3	16
128	Synthesis of chiloglottones – semiochemicals from sexually deceptive orchids and their pollinators. Organic and Biomolecular Chemistry, 2009, 7, 4296.	1.5	16
129	Genetic evidence confirms severe extinction risk for critically endangered swift parrots: implications for conservation management. Animal Conservation, 2018, 21, 313-323.	1.5	16
130	Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives. Genome, 2003, 46, 382-393.	0.9	14
131	Chloroplast simple sequence repeat markers for evolutionary studies in the sexually deceptive orchid genus <i>Chiloglottis</i> . Molecular Ecology Resources, 2009, 9, 784-789.	2.2	14
132	Identification of the First Alkenyl Chiloglottone Congener. European Journal of Organic Chemistry, 2012, 2012, 5818-5827.	1.2	14
133	UV-B light contributes directly to the synthesis of chiloglottone floral volatiles. Annals of Botany, 2015, 115, 693-703.	1.4	14
134	Validation of non-invasive genetic tagging in two large macaw species (Ara macao and A.) Tj ETQq0 0 0 rgBT /Ov	erlock 10 .4	Tf 50 462 Td 14
135	Population structure of an orchid mycorrhizal fungus with genus-wide specificity. Scientific Reports, 2017, 7, 5613.	1.6	14
136	Microsatellite markers for evolutionary studies in the sexually deceptive orchid genus Chiloglottis. Molecular Ecology Notes, 2006, 6, 123-126.	1.7	13
137	Mismatch in the distribution of floral ecotypes and pollinators: insights into the evolution of sexually deceptive orchids. Journal of Evolutionary Biology, 2015, 28, 601-612.	0.8	13
138	A Specific Blend of Drakolide and Hydroxymethylpyrazines: An Unusual Pollinator Sexual Attractant Used by the Endangered Orchid <i>Drakaea micrantha</i> . Angewandte Chemie - International Edition, 2020, 59, 1124-1128.	7.2	13
139	Parapheromones for Thynnine Wasps. Journal of Chemical Ecology, 2016, 42, 17-23.	0.9	12
140	The Spider Orchid Caladenia crebra Produces Sulfurous Pheromone Mimics to Attract its Male Wasp Pollinator. Angewandte Chemie, 2017, 129, 8575-8578.	1.6	12
	(Methylthio)phenol semiochemicals are exploited by deceptive orchids as sexual attractants for		

141	Campylothynnus thynnine wasps. Fìtoterapìâ, 2018, 126, 78-82.	1.1	12
142	Breaking the rules: discovery of sexual deception in Caladenia abbreviata (Orchidaceae), a species with brightly coloured flowers and a non-insectiform labellum. Australian Journal of Botany, 2018, 66, 95.	0.3	12
143	An experimental evaluation of traits that influence the sexual behaviour of pollinators in sexually deceptive orchids. Journal of Evolutionary Biology, 2018, 31, 1732-1742.	0.8	12
144	A specialised pollination system using nectarâ€seeking thynnine wasps in <i>Caladenia nobilis</i>	1.8	12

A specialised pollination system using nectara€seeking thy (<i>Orchidaceae</i>). Plant Biology, 2020, 22, 157-166. 144

#	Article	IF	CITATIONS
145	Microdot technology for individual marking of small arthropods. Agricultural and Forest Entomology, 2012, 14, 171-175.	0.7	11
146	The role of relatedness in mate choice by an arboreal marsupial in the presence of fine-scale genetic structure. Behavioral Ecology and Sociobiology, 2016, 70, 313-321.	0.6	11
147	2-(Tetrahydrofuran-2-yl)acetic Acid and Ester Derivatives as Long-Range Pollinator Attractants in the Sexually Deceptive Orchid Cryptostylis ovata. Journal of Natural Products, 2019, 82, 1107-1113.	1.5	11
148	Anthocyanin and Flavonol Glycoside Metabolic Pathways Underpin Floral Color Mimicry and Contrast in a Sexually Deceptive Orchid. Frontiers in Plant Science, 2022, 13, 860997.	1.7	11
149	Pollination: The Price of Attraction. Current Biology, 2012, 22, R680-R682.	1.8	10
150	Phylogenetic and Microsatellite Markers for Tulasnella (Tulasnellaceae) Mycorrhizal Fungi Associated with Australian Orchids. Applications in Plant Sciences, 2013, 1, 1200394.	0.8	10
151	Isolation and characterization of polymorphic microsatellite markers in the white-winged chough (Corcorax melanorhamphos). Molecular Ecology Notes, 2003, 3, 586-588.	1.7	9
152	DISPERSAL, PHILOPATRY, AND INFIDELITY: DISSECTING LOCAL GENETIC STRUCTURE IN SUPERB FAIRY-WRENS (MALURUS CYANEUS). Evolution; International Journal of Organic Evolution, 2005, 59, 625.	1.1	9
153	Does inbreeding avoidance maintain gender dimorphism in Wurmbea dioica (Colchicaceae)?. Journal of Evolutionary Biology, 2006, 19, 1497-1506.	0.8	9
154	Structure-Activity Studies of Semiochemicals from the Spider Orchid Caladenia plicata for Sexual Deception. Journal of Chemical Ecology, 2018, 44, 436-443.	0.9	9
155	A multitiered sequence capture strategy spanning broad evolutionary scales: Application for phylogenetic and phylogeographic studies of orchids. Molecular Ecology Resources, 2021, 21, 1118-1140.	2.2	9
156	SPATIAL AUTOCORRELATION ANALYSIS OFFERS NEW INSIGHTS INTO GENE FLOW IN THE AUSTRALIAN BUSH RAT, RATTUS FUSCIPES. Evolution; International Journal of Organic Evolution, 2003, 57, 1182.	1.1	8
157	Using probability modelling and genetic parentage assignment to test the role of local mate availability in mating system variation. Molecular Ecology, 2012, 21, 572-586.	2.0	8
158	Genetic diversity in an ant-dispersed chenopod Sclerolaena diacantha. Austral Ecology, 1993, 18, 171-179.	0.7	7
159	DOES SELECTION ON FLORAL ODOR PROMOTE DIFFERENTIATION AMONG POPULATIONS AND SPECIES OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS?. Evolution; International Journal of Organic Evolution, 2005, 59, 1449.	1.1	7
160	An evaluation of primers for microsatellite markers in Scarlet Macaw (Ara macao) and their performance in a Peruvian wild population. Conservation Genetics Resources, 2015, 7, 157-159.	0.4	7
161	The application of non-invasive genetic tagging reveals new insights into the clay lick use by macaws in the Peruvian Amazon. Conservation Genetics, 2017, 18, 1037-1046.	0.8	7
162	The impact of mating systems and dispersal on fineâ€scale genetic structure at maternally, paternally and biparentally inherited markers. Molecular Ecology, 2018, 27, 66-82.	2.0	7

#	Article	IF	CITATIONS
163	Evidence for the Involvement of Fatty Acid Biosynthesis and Degradation in the Formation of Insect Sex Pheromone-Mimicking Chiloglottones in Sexually Deceptive Chiloglottis Orchids. Frontiers in Plant Science, 2018, 9, 839.	1.7	7
164	Duplication and selection in Î ² -ketoacyl-ACP synthase gene lineages in the sexually deceptive Chiloglottis (Orchidaceace). Annals of Botany, 2019, 123, 1053-1066.	1.4	7
165	Floral Volatiles for Pollinator Attraction and Speciation in Sexually Deceptive Orchids. , 2020, , 271-295.		7
166	Development of Phylogenetic Markers for Sebacina (Sebacinaceae) Mycorrhizal Fungi Associated with Australian Orchids. Applications in Plant Sciences, 2014, 2, 1400015.	0.8	6
167	Pollination by nectarâ€foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. Plant Biology, 2021, 23, 702-710.	1.8	6
168	Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. Frontiers in Plant Science, 2022, 13, .	1.7	6
169	A PHYLOGENETIC STUDY OF POLLINATOR CONSERVATISM AMONG SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2002, 56, 888.	1.1	4
170	INBREEDING AVOIDANCE AND THE EVOLUTION OF GENDER DIMORPHISM IN WURMBEA BIGLANDULOSA (COLCHICACEAE). Evolution; International Journal of Organic Evolution, 2006, 60, 529.	1.1	4
171	Identification of the endangered Australian orchid Microtis angusii using an allele-specific PCR assay. Conservation Genetics, 2007, 8, 721-725.	0.8	4
172	The influence of fire and silvicultural practices on the landscape-scale genetic structure of an Australian foundation tree species. Conservation Genetics, 2020, 21, 231-246.	0.8	4
173	Bioassay-Guided Semiochemical Discovery in Volatile-Mediated Specialized Plant–Pollinator Interactions with a Practical Guide to Fast-Track Progress. , 2020, , 39-56.		4
174	Functional genotypes are associated with commensal <i>Escherichia coli</i> strain abundance withinâ€host individuals and populations. Molecular Ecology, 2013, 22, 4112-4122.	2.0	3
175	Sharing of Pyrazine Semiochemicals between Genera of Sexually Deceptive Orchids. Natural Product Communications, 2013, 8, 1934578X1300800.	0.2	3
176	Microsatellite loci for behavioural studies of Eclectus parrot (Eclectus roratus: Aves). Molecular Ecology Notes, 2005, 5, 616-618.	1.7	2
177	The effective management of threatened flora: lessons from the case of Zieria 'prostrata' ms. Pacific Conservation Biology, 2000, 6, 238.	0.5	2
178	Drakolide Structure-activity Relationships for Sexual Attraction of Zeleboria Wasp Pollinator. Journal of Chemical Ecology, 2022, 48, 323-336.	0.9	2
179	A Specific Blend of Drakolide and Hydroxymethylpyrazines: An Unusual Pollinator Sexual Attractant Used by the Endangered Orchid <i>Drakaea micrantha</i> . Angewandte Chemie, 2020, 132, 1140-1144.	1.6	1

180 Evolution of reproductive structures for in $\hat{a} \in \hat{f}$ light mating in thynnine wasps (Hymenoptera: Thynnidae:) Tj ETQq0 0.0 rgBT /Qverlock 10 0.8 r

#	Article	IF	CITATIONS
181	Functional genotypes are associated with commensal <i>Escherichia coli</i> strain abundance within host individuals and populations. Molecular Ecology, 2013, 22, 6197-6197.	2.0	0
182	Innenrücktitelbild: The Spider Orchid <i>Caladenia crebra</i> Produces Sulfurous Pheromone Mimics to Attract its Male Wasp Pollinator (Angew. Chem. 29/2017). Angewandte Chemie, 2017, 129, 8707-8707.	1.6	0
183	Floral economies. Current Biology, 2022, 32, R640-R644.	1.8	0