List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111205/publications.pdf Version: 2024-02-01

		22132	23514
217	14,348	59	111
papers	citations	h-index	g-index
235	235	235	15117
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Autophagosomes form at ER–mitochondria contact sites. Nature, 2013, 495, 389-393.	13.7	1,401
2	Mutations in Dynein Link Motor Neuron Degeneration to Defects in Retrograde Transport. Science, 2003, 300, 808-812.	6.0	652
3	Chapter 13 Fluorescence Microscopy in Three Dimensions. Methods in Cell Biology, 1989, 30, 353-377.	0.5	595
4	ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nature Biotechnology, 2006, 24, 841-847.	9.4	508
5	The NDA3 gene of fission yeast encodes β-tubulin: A cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell, 1984, 39, 349-358.	13.5	491
6	Aneuploidy Drives Genomic Instability in Yeast. Science, 2011, 333, 1026-1030.	6.0	367
7	Meiotic Proteins Bqt1 and Bqt2 Tether Telomeres to Form the Bouquet Arrangement of Chromosomes. Cell, 2006, 125, 59-69.	13.5	307
8	Dynamics of Centromeres during Metaphase–Anaphase Transition in Fission Yeast: Dis1 Is Implicated in Force Balance in Metaphase Bipolar Spindle. Molecular Biology of the Cell, 1998, 9, 3211-3225.	0.9	291
9	Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature, 2006, 442, 45-50.	13.7	289
10	Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. Journal of Cell Science, 2001, 114, 4567-4573.	1.2	272
11	A Cytoplasmic Dynein Heavy Chain Is Required for Oscillatory Nuclear Movement of Meiotic Prophase and Efficient Meiotic Recombination in Fission Yeast. Journal of Cell Biology, 1999, 145, 1233-1250.	2.3	244
12	Dynamics of Homologous Chromosome Pairing during Meiotic Prophase in Fission Yeast. Developmental Cell, 2004, 6, 329-341.	3.1	243
13	The SUN Rises on Meiotic Chromosome Dynamics. Developmental Cell, 2009, 17, 598-605.	3.1	238
14	Identification of the pleiotropic cell division cycle gene NDA2 as one of two different α-tubulin genes in schizosaccharomyces pombe. Cell, 1984, 37, 233-241.	13.5	235
15	BAF is required for emerin assembly into the reforming nuclear envelope. Journal of Cell Science, 2001, 114, 4575-4585.	1.2	201
16	Live cell imaging and electron microscopy reveal dynamic processes of BAF-directed nuclear envelope assembly. Journal of Cell Science, 2008, 121, 2540-2554.	1.2	196
17	Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction. Science, 2008, 321, 1088-1091.	6.0	185
18	Phosphorylation of RNA-binding protein controls cell cycle switch from mitotic to meiotic in fission yeast. Nature, 1997, 386, 187-190.	13.7	182

#	Article	IF	CITATIONS
19	Cellular stresses induce the nuclear accumulation of importin $\hat{I}\pm$ and cause a conventional nuclear import block. Journal of Cell Biology, 2004, 165, 617-623.	2.3	168
20	Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Current Biology, 2001, 11, 1618-1623.	1.8	157
21	Multispectral Imaging Fluorescence Microscopy for Living Cells Cell Structure and Function, 2002, 27, 367-374.	0.5	145
22	Dynamic behavior of Nuf2-Hec1 complex that localizes to the centrosome and centromere and is essential for mitotic progression in vertebrate cells. Journal of Cell Science, 2003, 116, 3347-3362.	1.2	139
23	Large-scale screening of intracellular protein localization in living fission yeast cells by the use of a GFP-fusion genomic DNA library. Genes To Cells, 2000, 5, 169-190.	0.5	137
24	Dynamic interaction between BAF and emerin revealed by FRAP, FLIP, and FRET analyses in living HeLa cells. Journal of Structural Biology, 2004, 147, 31-41.	1.3	132
25	CENP-I Is Essential for Centromere Function in Vertebrate Cells. Developmental Cell, 2002, 2, 463-476.	3.1	131
26	Cadherin activity is required for activity-induced spine remodeling. Journal of Cell Biology, 2004, 167, 961-972.	2.3	127
27	Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy. FEBS Journal, 2004, 271, 1035-1045.	0.2	124
28	Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. Journal of Cell Science, 2003, 116, 3327-3338.	1.2	121
29	Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO Journal, 2003, 22, 2284-2296.	3.5	119
30	Meiosis-Specific Noncoding RNA Mediates Robust Pairing of Homologous Chromosomes in Meiosis. Science, 2012, 336, 732-736.	6.0	119
31	A conserved protein, Nuf2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma, 2001, 110, 322-334.	1.0	115
32	Membrane proteins Bqt3 and -4 anchor telomeres to the nuclear envelope to ensure chromosomal bouquet formation. Journal of Cell Biology, 2009, 187, 413-427.	2.3	114
33	Spectral imaging fluorescence microscopy. Genes To Cells, 2002, 7, 881-887.	0.5	111
34	Focal points for chromosome condensation and decondensation revealed by three-dimensional in vivo time-lapse microscopy. Nature, 1989, 342, 293-296.	13.7	107
35	MMXD, a TFIIH-Independent XPD-MMS19 Protein Complex Involved in Chromosome Segregation. Molecular Cell, 2010, 39, 632-640.	4.5	103
36	Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biology, 2012, 2, 120014.	1.5	101

#	Article	IF	CITATIONS
37	Ect2 and MgcRacGAP regulate the activation and function of Cdc42 in mitosis. Journal of Cell Biology, 2005, 168, 221-232.	2.3	100
38	A conserved motif within RAP1 has diversified roles in telomere protection and regulation in different organisms. Nature Structural and Molecular Biology, 2011, 18, 213-221.	3.6	100
39	Multiple-color Fluorescence Imaging of Chromosomes and Microtubules in Living Cells Cell Structure and Function, 1999, 24, 291-298.	0.5	97
40	Lamin B Receptor Recognizes Specific Modifications of Histone H4 in Heterochromatin Formation. Journal of Biological Chemistry, 2012, 287, 42654-42663.	1.6	95
41	Functional Expression of Human Mitochondrial CYP11B2 in Fission Yeast and Identification of a New Internal Electron Transfer Protein, etp1â€. Biochemistry, 2002, 41, 2311-2321.	1.2	92
42	Meiotic cohesins modulate chromosome compaction during meiotic prophase in fission yeast. Journal of Cell Biology, 2006, 174, 499-508.	2.3	91
43	The 14-kDa Dynein Light Chain-Family Protein Dlc1 Is Required for Regular Oscillatory Nuclear Movement and Efficient Recombination during Meiotic Prophase in Fission Yeast. Molecular Biology of the Cell, 2002, 13, 930-946.	0.9	90
44	Another way to move chromosomes. Chromosoma, 2007, 116, 497-505.	1.0	85
45	Codon usage bias is correlated with gene expression levels in the fission yeast <i>Schizosaccharomyces pombe</i> . Genes To Cells, 2009, 14, 499-509.	0.5	85
46	How do meiotic chromosomes meet their homologous partners?: lessons from fission yeast. BioEssays, 2001, 23, 526-533.	1.2	80
47	Two Distinct Repeat Sequences of Nup98 Nucleoporins Characterize Dual Nuclei in the Binucleated Ciliate Tetrahymena. Current Biology, 2009, 19, 843-847.	1.8	78
48	Dynamics of chromosomes and microtubules visualized by multiple-wavelength fluorescence imaging in living mammalian cells: effects of mitotic inhibitors on cell cycle progression. Genes To Cells, 1997, 2, 369-380.	0.5	75
49	Dissociation of the Nuf2-Ndc80 Complex Releases Centromeres from the Spindle-Pole Body during Meiotic Prophase in Fission Yeast. Molecular Biology of the Cell, 2005, 16, 2325-2338.	0.9	73
50	Meiotic behaviours of chromosomes and microtubules in budding yeast: relocalization of centromeres and telomeres during meiotic prophase. Genes To Cells, 1998, 3, 587-601.	0.5	71
51	Dynamic Behavior of Microtubules during Dynein-dependent Nuclear Migrations of Meiotic Prophase in Fission Yeast. Molecular Biology of the Cell, 2001, 12, 3933-3946.	0.9	70
52	The Constitutive Centromere Component CENP-50 Is Required for Recovery from Spindle Damage. Molecular and Cellular Biology, 2005, 25, 10315-10328.	1.1	69
53	Artificial induction of autophagy around polystyrene beads in nonphagocytic cells. Autophagy, 2010, 6, 36-45.	4.3	67
54	Characterization of <i>rec7</i> , an Early Meiotic Recombination Gene in <i>Schizosaccharomyces pombe</i> . Genetics, 2001, 157, 519-532.	1.2	66

#	Article	IF	CITATIONS
55	Heat-shock induced nuclear retention and recycling inhibition of importin alpha. Genes To Cells, 2004, 9, 429-441.	0.5	65
56	In vivo evidence for the fibrillar structures of Sup35 prions in yeast cells. Journal of Cell Biology, 2010, 190, 223-231.	2.3	65
57	Performance Evaluation of Leader–Follower-Based Mobile Molecular Communication Networks for Target Detection Applications. IEEE Transactions on Communications, 2017, 65, 663-676.	4.9	65
58	Linear element formation and their role in meiotic sister chromatid cohesion and chromosome pairing. Journal of Cell Science, 2003, 116, 1719-1731.	1.2	64
59	Highly condensed chromatins are formed adjacent to subtelomeric and decondensed silent chromatin in fission yeast. Nature Communications, 2015, 6, 7753.	5.8	64
60	Inner nuclear membrane protein Ima1 is dispensable for intranuclear positioning of centromeres. Genes To Cells, 2011, 16, 1000-1011.	0.5	63
61	Virtual Breakdown of the Nuclear Envelope in Fission Yeast Meiosis. Current Biology, 2010, 20, 1919-1925.	1.8	61
62	Localization of gene products using a chromosomally tagged GFPâ€fusion library in the fission yeast <i>Schizosaccharomyces pombe</i> . Genes To Cells, 2009, 14, 217-225.	0.5	60
63	Active involvement of micro-lipid droplets and lipid-droplet-associated proteins in hormone-stimulated lipolysis in adipocytes. Journal of Cell Science, 2012, 125, 6127-6136.	1.2	60
64	Externally Controllable Molecular Communication. IEEE Journal on Selected Areas in Communications, 2014, 32, 2417-2431.	9.7	59
65	Methods and Applications of Mobile Molecular Communication. Proceedings of the IEEE, 2019, 107, 1442-1456.	16.4	59
66	Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy. Scientific Reports, 2018, 8, 7583.	1.6	58
67	Meiosis induced by inactivation of Pat1 kinase proceeds with aberrant nuclear positioning of centromeres in the fission yeastSchizosaccharomyces pombe. Genes To Cells, 2004, 9, 671-684.	0.5	57
68	Two-step, extensive alterations in the transcriptome from GO arrest to cell division in Schizosaccharomyces pombe. Genes To Cells, 2007, 12, 677-692.	0.5	57
69	Cooperative Target Tracking by a Mobile Bionanosensor Network. IEEE Transactions on Nanobioscience, 2014, 13, 267-277.	2.2	56
70	Recent advancements in structured-illumination microscopy toward live-cell imaging. Microscopy (Oxford, England), 2015, 64, 237-249.	0.7	56
71	Cytoplasmic dynein in fungi: insights from nuclear migration. Journal of Cell Science, 2003, 116, 4501-4512.	1.2	53
72	Characterization of nuclear pore complex components in fission yeast <i>Schizosaccharomyces pombe</i> . Nucleus, 2014, 5, 149-162.	0.6	53

#	Article	IF	CITATIONS
73	Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe. Chromosoma, 2016, 125, 205-214.	1.0	53
74	Meiotic telomeres: a matchmaker for homologous chromosomes. Genes To Cells, 1998, 3, 405-413.	0.5	52
75	A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation. Journal of Molecular Biology, 2016, 428, 3885-3902.	2.0	52
76	Nuclear localization of barrier-to-autointegration factor is correlated with progression of S phase in human cells. Journal of Cell Science, 2007, 120, 1967-1977.	1.2	50
77	Identification of human endomucin-1 and -2 as membrane-boundO-sialoglycoproteins with anti-adhesive activity1. FEBS Letters, 2001, 499, 121-126.	1.3	48
78	Identification of Conserved MEL-28/ELYS Domains with Essential Roles in Nuclear Assembly and Chromosome Segregation. PLoS Genetics, 2016, 12, e1006131.	1.5	48
79	Chromosome-associated RNA–protein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nature Communications, 2019, 10, 5598.	5.8	47
80	Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms. Genes To Cells, 2010, 15, 661-669.	0.5	46
81	Telomere-Nuclear Envelope Dissociation Promoted by Rap1 Phosphorylation Ensures Faithful Chromosome Segregation. Current Biology, 2012, 22, 1932-1937.	1.8	46
82	Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. Journal of Cell Biology, 2013, 200, 385-395.	2.3	45
83	Inner nuclear membrane protein Lem2 augments heterochromatin formation in response to nutritional conditions. Genes To Cells, 2016, 21, 812-832.	0.5	44
84	Histone H3K36 trimethylation is essential for multiple silencing mechanisms in fission yeast. Nucleic Acids Research, 2016, 44, 4147-4162.	6.5	44
85	Activation of the pheromone-responsive MAP kinase drives haploid cells to undergo ectopic meiosis with normal telomere clustering and sister chromatid segregation in fission yeast. Journal of Cell Science, 2004, 117, 3875-3886.	1.2	40
86	Live observation of fission yeast meiosis in recombination-deficient mutants. Journal of Cell Science, 2001, 114, 2843-2853.	1.2	40
87	Not so peculiar: fission yeast telomere repeats. Trends in Biochemical Sciences, 1998, 23, 126.	3.7	39
88	Assembly of additional heterochromatin distinct from centromere-kinetochore chromatin is required for de novo formation of human artificial chromosome. Journal of Cell Science, 2005, 118, 5885-5898.	1.2	39
89	Live Observation of Forespore Membrane Formation in Fission Yeast. Molecular Biology of the Cell, 2008, 19, 3544-3553.	0.9	39
90	Molecular Communication through Gap Junction Channels: System Design, Experiments and Modeling.		39

, 2007, , .

#	Article	IF	CITATIONS
91	Shugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing. Nature Communications, 2016, 7, 10393.	5.8	38
92	Very-long-chain fatty acid elongase Elo2 rescues lethal defects associated with loss of the nuclear barrier function. Journal of Cell Science, 2019, 132, .	1.2	38
93	Reconstruction of the Kinetochore during Meiosis in Fission Yeast Schizosaccharomyces pombe. Molecular Biology of the Cell, 2006, 17, 5173-5184.	0.9	37
94	Fluorescence correlation spectroscopy with visible-wavelength superconducting nanowire single-photon detector. Optics Express, 2014, 22, 28783.	1.7	37
95	Chromosome Scaffold is a Double-Stranded Assembly of Scaffold Proteins. Scientific Reports, 2015, 5, 11916.	1.6	37
96	A Novel Fission Yeast Gene, tht1+, Is Required for the Fusion of Nuclear Envelopes during Karyogamy. Journal of Cell Biology, 1998, 140, 247-258.	2.3	36
97	Characterization of fission yeast meiotic mutants based on live observation of meiotic prophase nuclear movement. Chromosoma, 2000, 109, 103-109.	1.0	34
98	BAF is a cytosolic DNA sensor that leads to exogenous DNA avoiding autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7027-7032.	3.3	34
99	Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation. Journal of Cell Biology, 2008, 182, 277-288.	2.3	33
100	Molecular Communication through Gap Junction Channels. Lecture Notes in Computer Science, 2008, , 81-99.	1.0	33
101	The Chaperone FACT and Histone H2B Ubiquitination Maintain S.Âpombe Genome Architecture through Genic and Subtelomeric Functions. Molecular Cell, 2020, 77, 501-513.e7.	4.5	32
102	Gene Expression and Distribution of Swi6 in Partial Aneuploids of the Fission Yeast Schizosaccharomyces pombe. Cell Structure and Function, 2007, 32, 149-161.	0.5	31
103	Histone H4 acetylation required for chromatin decompaction during DNA replication. Scientific Reports, 2015, 5, 12720.	1.6	31
104	The histone variant H2A.Z promotes initiation of meiotic recombination in fission yeast. Nucleic Acids Research, 2018, 46, 609-620.	6.5	31
105	Interaction of the chromatin compaction-inducing domain (LR domain) of Ki-67 antigen with HP1 proteins. Genes To Cells, 2002, 7, 1231-1242.	0.5	30
106	A Defect in Protein Farnesylation Suppresses a Loss of Schizosaccharomyces pombe tsc2+, a Homolog of the Human Gene Predisposing to Tuberous Sclerosis Complex. Genetics, 2006, 173, 569-578.	1.2	30
107	Lem2 is retained at the nuclear envelope through its interaction with Bqt4 in fission yeast. Genes To Cells, 2018, 23, 122-135.	0.5	30
108	Spatiotemporal regulations of Wee1 at the G2/M transition. Molecular Biology of the Cell, 2011, 22, 555-569.	0.9	29

#	Article	IF	CITATIONS
109	Lem2 and Lnp1 maintain the membrane boundary between the nuclear envelope and endoplasmic reticulum. Communications Biology, 2020, 3, 276.	2.0	29
110	Mediator Directs Co-transcriptional Heterochromatin Assembly by RNA Interference-Dependent and -Independent Pathways. PLoS Genetics, 2013, 9, e1003677.	1.5	28
111	Distinctive Responses to Nitrogen Starvation in the Dominant Active Mutants of the Fission Yeast Rheb GTPase. Genetics, 2009, 183, 517-527.	1.2	26
112	From meiosis to postmeiotic events: Alignment and recognition of homologous chromosomes in meiosis. FEBS Journal, 2010, 277, 565-570.	2.2	26
113	Symmetry, asymmetry, and kinetics of silencing establishment in Saccharomyces cerevisiae revealed by single-cell optical assays. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1209-1216.	3.3	26
114	Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Gene, 2014, 534, 249-255.	1.0	26
115	Peroxisomes Are Formed from Complex Membrane Structures inPEX6-deficient CHO Cells upon Genetic Complementation. Molecular Biology of the Cell, 2002, 13, 711-722.	0.9	25
116	Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector. Optics Express, 2015, 23, 32633.	1.7	24
117	Biased assembly of the nuclear pore complex is required for somatic and germline nuclear differentiation in <i>Tetrahymena</i> . Journal of Cell Science, 2015, 128, 1812-23.	1.2	24
118	Meiotic cohesin subunits RAD21L and REC8 are positioned at distinct regions between lateral elements and transverse filaments in the synaptonemal complex of mouse spermatocytes. Journal of Reproduction and Development, 2016, 62, 623-630.	0.5	24
119	Compositionally distinct nuclear pore complexes of functionally distinct dimorphic nuclei in ciliate <i>Tetrahymena</i> . Journal of Cell Science, 2017, 130, 1822-1834.	1.2	24
120	Regulation of ectopic heterochromatin-mediated epigenetic diversification by the JmjC family protein Epe1. PLoS Genetics, 2019, 15, e1008129.	1.5	23
121	Mitotic Specific Phosphorylation of Serine-1212 in Human DNA Topoisomerase II.ALPHA Cell Structure and Function, 2001, 26, 215-226.	0.5	23
122	A cohesin-based structural platform supporting homologous chromosome pairing in meiosis. Current Genetics, 2016, 62, 499-502.	0.8	22
123	Asymmetrical localization of Nup107-160 subcomplex components within the nuclear pore complex in fission yeast. PLoS Genetics, 2019, 15, e1008061.	1.5	22
124	Surprising phenotypic diversity of cancer-associated mutations of Gly 34 in the histone H3 tail. ELife, 2021, 10, .	2.8	22
125	Nuclear structure-associated TIF2 recruits glucocorticoid receptor and its target DNA. Biochemical and Biophysical Research Communications, 2004, 320, 218-225.	1.0	20
126	A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules. Experimental Cell Research, 2012, 318, 262-275.	1.2	20

#	Article	IF	CITATIONS
127	Transcriptional Suppression by Transient Recruitment of ARIP4 to Sumoylated Nuclear Receptor Ad4BP/SF-1. Molecular Biology of the Cell, 2009, 20, 4235-4245.	0.9	19
128	Fluorescence imaging of mammalian living cells. Chromosome Research, 1996, 4, 173-176.	1.0	18
129	Borna Disease Virus Assembles Porous Cage-like Viral Factories in the Nucleus. Journal of Biological Chemistry, 2016, 291, 25789-25798.	1.6	18
130	A locallyâ€induced increase in intracellular Ca ²⁺ propagates cellâ€toâ€cell in the presence of plasma membrane Ca ²⁺ ATPase inhibitors in nonâ€excitable cells. FEBS Letters, 2009, 583, 3593-3599.	1.3	17
131	The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts. PLoS Genetics, 2012, 8, e1002776.	1.5	17
132	Virtual Nuclear Envelope Breakdown and Its Regulators in Fission Yeast Meiosis. Frontiers in Cell and Developmental Biology, 2016, 4, 5.	1.8	17
133	The role of chromosomal retention of noncoding RNA in meiosis. Chromosome Research, 2013, 21, 665-672.	1.0	16
134	Non-destructive handling of individual chromatin fibers isolated from single cells in a microfluidic device utilizing an optically driven microtool. Lab on A Chip, 2014, 14, 696-704.	3.1	16
135	Spatial organization of the <i>Schizosaccharomyces pombe</i> genome within the nucleus. Yeast, 2017, 34, 55-66.	0.8	16
136	The conserved histone variant H2A.Z illuminates meiotic recombination initiation. Current Genetics, 2018, 64, 1015-1019.	0.8	16
137	Roles of Nup133, Nup153 and membrane fenestrations in assembly of the nuclear pore complex at the end of mitosis. Genes To Cells, 2019, 24, 338-353.	0.5	16
138	Overexpression of the human MNB/DYRK1A gene induces formation of multinucleate cells through overduplication of the centrosome. BMC Cell Biology, 2003, 4, 12.	3.0	15
139	The carboxy-terminus of Alp4 alters microtubule dynamics to induce oscillatory nuclear movement led by the spindle pole body in Schizosaccharomyces pombe. Genes To Cells, 2006, 11, 337-352.	0.5	15
140	Nuclear envelope attachment is not necessary for telomere function in fission yeast. Nucleus, 2010, 1, 481-486.	0.6	15
141	Function of nuclear membrane proteins in shaping the nuclear envelope integrity during closed mitosis. Journal of Biochemistry, 2017, 161, 471-477.	0.9	15
142	Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. ELife, 2018, 7, .	2.8	15
143	Phase separation drives pairing of homologous chromosomes. Current Genetics, 2020, 66, 881-887.	0.8	15
144	Rec8 Cohesin: A Structural Platform for Shaping the Meiotic Chromosomes. Genes, 2022, 13, 200.	1.0	15

9

#	Article	IF	CITATIONS
145	A method of correlative light and electron microscopy for yeast cells. Micron, 2014, 61, 53-61.	1.1	14
146	Live-Cell Fluorescence Imaging of Meiotic Chromosome Dynamics in Schizosaccharomyces pombe. Methods in Molecular Biology, 2009, 558, 53-64.	0.4	14
147	Exportin 4 Interacts with Sox9 through the HMG Box and Inhibits the DNA Binding of Sox9. PLoS ONE, 2011, 6, e25694.	1.1	14
148	Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Communications Biology, 2022, 5, 78.	2.0	14
149	Identification of Ribonucleotide Reductase Protein R1 as an Activator of Microtubule Nucleation in <i>Xenopus</i> Egg Mitotic Extracts. Molecular Biology of the Cell, 2000, 11, 4173-4187.	0.9	13
150	Meiotic nuclear movements in fission yeast are regulated by the transcription factor Mei4 downstream of a Cds1â€dependent replication checkpoint pathway. Genes To Cells, 2015, 20, 160-172.	0.5	13
151	Nup132 modulates meiotic spindle attachment in fission yeast by regulating kinetochore assembly. Journal of Cell Biology, 2015, 211, 295-308.	2.3	13
152	Depletion of autophagy receptor p62/ <scp>SQSTM</scp> 1 enhances the efficiency of gene delivery in mammalian cells. FEBS Letters, 2016, 590, 2671-2680.	1.3	13
153	Lipid droplet dynamics during <i>Schizosaccharomyces pombe</i> sporulation and their role in spore survival. Biology Open, 2017, 6, 217-222.	0.6	13
154	Ser7 of RNAPII-CTD facilitates heterochromatin formation by linking ncRNA to RNAi. Proceedings of the United States of America, 2017, 114, E11208-E11217.	3.3	13
155	Nuclear Envelope Proteins Modulating the Heterochromatin Formation and Functions in Fission Yeast. Cells, 2020, 9, 1908.	1.8	13
156	Characterization of rec15, an early meiotic recombination gene in Schizosaccharomyces pombe. Current Genetics, 2005, 48, 323-333.	0.8	12
157	Microplatform for intercellular communication. , 2008, , .		12
158	Biological excitable media based on non-excitable cells and calcium signaling. Nano Communication Networks, 2010, 1, 43-49.	1.6	12
159	Physical breakdown of the nuclear envelope is not necessary for breaking its barrier function. Nucleus, 2011, 2, 523-526.	0.6	12
160	Modeling and performance evaluation of mobile bionanosensor networks for target tracking. , 2014, ,		12
161	Chromosomes Rein Back the Spindle Pole Body during Horsetail Movement in Fission Yeast Meiosis. Cell Structure and Function, 2014, 39, 93-100.	0.5	12
162	p62/ <scp>SQSTM</scp> 1 promotes rapid ubiquitin conjugation to target proteins after endosome rupture during xenophagy. FEBS Open Bio, 2018, 8, 470-480.	1.0	12

#	Article	IF	CITATIONS
163	Chromatin loading of MCM hexamers is associated with di-/tri-methylation of histone H4K20 toward SÂphase entry. Nucleic Acids Research, 2021, 49, 12152-12166.	6.5	12
164	Molecular communication through gap junction channels: System design, experiments and modeling. , 2007, , .		11
165	Monoclonal Antibodies Recognize Gly-Leu-Phe-Gly Repeat of Nucleoporin Nup98 of <i>Tetrahymena</i> , Yeasts, and Humans. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2013, 32, 81-90.	0.8	11
166	Shelterin promotes tethering of late replication origins to telomeres for replicationâ€ŧiming control. EMBO Journal, 2018, 37, .	3.5	11
167	Three-dimensional light microscopy of diploidDrosophila chromosomes. Cytoskeleton, 1988, 10, 18-27.	4.4	10
168	Modulation of Alp4 function in Schizosaccharomyces pombe induces novel phenotypes that imply distinct functions for nuclear and cytoplasmic gamma-tubulin complexes. Genes To Cells, 2006, 11, 319-336.	0.5	10
169	Uniquely designed nuclear structures of lower eukaryotes. Current Opinion in Cell Biology, 2016, 40, 66-73.	2.6	9
170	Visualization of a Specific Genome Locus by the lacO/LacI-GFP System. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot091934.	0.2	9
171	Schizosaccharomyces pombe taf1 + is required for nitrogen starvation-induced sexual development and for entering the dormant GO state. Current Genetics, 2001, 38, 307-313.	0.8	8
172	Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation. Scientific Reports, 2015, 5, 14498.	1.6	8
173	Torsional Turning Motion of Chromosomes as an Accelerating Force to Align Homologous Chromosomes during Meiosis. Journal of the Physical Society of Japan, 2019, 88, 023801.	0.7	8
174	Rec8 Cohesin-mediated Axis-loop chromatin architecture is required for meiotic recombination. Nucleic Acids Research, 2022, 50, 3799-3816.	6.5	8
175	Reconstruction of the kinetochore: a prelude to meiosis. Cell Division, 2007, 2, 17.	1.1	7
176	Nuclear translocation of RanGAP1 coincides with virtual nuclear envelope breakdown in fission yeast meiosis. Communicative and Integrative Biology, 2011, 4, 312-314.	0.6	7
177	Intracellular ATP levels influence cell fates in <i>Dictyostelium discoideum</i> differentiation. Genes To Cells, 2020, 25, 312-326.	0.5	7
178	Functional Domain Analysis of Human HP1 Isoforms in Drosophila. Cell Structure and Function, 2007, 32, 57-67.	0.5	7
179	Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Research, 2022, 30, 43-57.	1.0	7
180	Chromosomally-retained RNA mediates homologous pairing. Nucleus, 2012, 3, 516-519.	0.6	6

#	Article	IF	CITATIONS
181	Purification and characterization of the fission yeast telomere clustering factors, Bqt1 and Bqt2. Protein Expression and Purification, 2013, 88, 207-213.	0.6	6
182	Nuclear localization signal targeting to macronucleus and micronucleus in binucleated ciliate <i>Tetrahymena thermophila</i> . Genes To Cells, 2018, 23, 568-579.	0.5	6
183	Linear elements are stable structures along the chromosome axis in fission yeast meiosis. Chromosoma, 2021, 130, 149-162.	1.0	6
184	Three-dimensional image reconstruction for biological micro-specimens using a double-axis fluorescence microscope. Optics Communications, 1997, 138, 21-26.	1.0	5
185	Uncleavable Nup98–Nup96 is functional in the fission yeast <i>Schizosaccharomyces pombe</i> . FEBS Open Bio, 2015, 5, 508-514.	1.0	5
186	The nuclear pore complex acts as a master switch for nuclear and cell differentiation. Communicative and Integrative Biology, 2015, 8, e1056950.	0.6	5
187	Fission yeast <scp>APC</scp> /C activators Slp1 and Fzr1 sequentially trigger two consecutive nuclear divisions during meiosis. FEBS Letters, 2017, 591, 1029-1040.	1.3	5
188	A double-axis microscope and its three-dimensional image position adjustment based on an optical marker method. Optics Communications, 1996, 129, 237-244.	1.0	4
189	Application of GFP. Time-Lapse Multi-Wavelength Fluorescence Imaging of Living Malnnralian Cells Acta Histochemica Et Cytochemica, 2000, 33, 169-175.	0.8	4
190	Externally Controllable Molecular Communication Systems for Pattern Formation. , 2014, , .		4
191	Cellular economy in fission yeast cells continuously cultured with limited nitrogen resources. Scientific Reports, 2015, 5, 15617.	1.6	4
192	A nucleoporin that facilitates meiotic kinetochore reorganization. Cell Cycle, 2016, 15, 307-308.	1.3	4
193	Transient Breakage of the Nucleocytoplasmic Barrier Controls Spore Maturation via Mobilizing the Proteasome Subunit Rpn11 in the Fission Yeast Schizosaccharomyces pombe. Journal of Fungi (Basel,) Tj ETQq1 1	0.384314	ł n gBT /Ov <mark>e</mark> r
194	Microscopic Observation of Living Cells Stained with Fluorescent Probes. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot079848.	0.2	3
195	Estimation of GFP-Nucleoporin Amount Based on Fluorescence Microscopy. Methods in Molecular Biology, 2018, 1721, 105-115.	0.4	3
196	Three-dimensional fluorescence microscopy for the analysis of spatial arrangement of chromosomes Acta Histochemica Et Cytochemica, 1991, 24, 357-365.	0.8	2
197	Early entry and deformation of macropinosomes correlates with high efficiency of decaarginineâ€polyethylene glycolâ€lipidâ€mediated gene delivery. Journal of Gene Medicine, 2012, 14, 262-271.	1.4	2
198	Nuclear formation induced by DNA-conjugated beads in living fertilised mouse egg. Scientific Reports, 2019, 9, 8461.	1.6	2

#	Article	IF	CITATIONS
199	Histone H2A insufficiency causes chromosomal segregation defects due to anaphase chromosome bridge formation at rDNA repeats in fission yeast. Scientific Reports, 2019, 9, 7159.	1.6	2
200	Identification of the evolutionarily conserved nuclear envelope proteins Lem2 and MicLem2 in Tetrahymena thermophila. Gene: X, 2019, 1, 100006.	2.3	2
201	Maintenance of meiotic crossover against reduced double-strand break formation in fission yeast lacking histone H2A.Z. Gene, 2020, 743, 144615.	1.0	2
202	Microtubule inhibitors identified through nonbiased screening enhance DNA transfection efficiency by delaying p62â€dependent ubiquitin recruitment. Genes To Cells, 2021, 26, 739-751.	0.5	2
203	Subtelomeric Chromatin in the Fission Yeast S. pombe. Microorganisms, 2021, 9, 1977.	1.6	2
204	Telomere Organization and Nuclear Movements. , 2004, , 191-205.		2
205	A cell-based molecular communication network. , 2006, , .		1
206	Fission Yeast Scp3 Potentially Maintains Microtubule Orientation through Bundling. PLoS ONE, 2015, 10, e0120109.	1.1	1
207	Newly found Tetrahymena nucleoporins, Nup214, Nup153 and Pom121/Pom82, differentiate nuclear pore complexes of functionally distinct nuclei. Communicative and Integrative Biology, 2018, 11, e1384890.	0.6	1
208	In vitro approaches for the study of microtubule nucleation at the fission yeast spindle pole body. Methods in Cell Biology, 2001, 67, 167-177.	0.5	0
209	Nuclear Movement Enforcing Chromosome Alignment in Fission Yeast—Meiosis Without Homolog Synapsis. Genome Dynamics and Stability, 2007, , 231-247.	1.1	0
210	Life in the light. Nature Photonics, 2019, 13, 69-70.	15.6	0
211	Human Ebp1 rescues the synthetic lethal growth of fission yeast cells lacking Cdb4 and Nup184. Genes To Cells, 2020, 25, 288-295.	0.5	0
212	Improved Methods for Preparing the Telomere Tethering Complex Bqt1–Bqt2 for Structural Studies. Protein Journal, 2020, 39, 174-181.	0.7	0
213	Imaging Hoechst-Labeled Chromosomes and Fluorescent Proteins during the Cell Cycle. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4673-pdb.prot4673.	0.2	0
214	Chromosome structure and dynamics as revealed by 3-D and 4-D imaging. Proceedings Annual Meeting Electron Microscopy Society of America, 1991, 49, 396-397.	0.0	0
215	Chromosome structure and dynamics as revealed by 3-D and 4-D imaging. Proceedings Annual Meeting Electron Microscopy Society of America, 1992, 50, 588-589.	0.0	0

Breakdown and Reformation of the Nuclear Envelope. , 2007, , 89-106.

0

#	Article	IF	CITATIONS
217	Chromatin Unlimited: An Evolutionary View of Chromatin. Epigenomes, 2022, 6, 2.	0.8	Ο