Honghua Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2111064/publications.pdf Version: 2024-02-01

Номении Мл

#	Article	IF	CITATIONS
1	Design and safety analysis of a 11-Waggon consist for transporting rails. Australian Journal of Mechanical Engineering, 2023, 21, 1474-1488.	1.5	5
2	Freight train air brake models. International Journal of Rail Transportation, 2023, 11, 1-49.	1.8	52
3	Curving resistance from wheel-rail interface. Vehicle System Dynamics, 2022, 60, 1018-1036.	2.2	10
4	Development and computational performance improvement of the wheel-rail coupling for heavy haul locomotive traction studies. Vehicle System Dynamics, 2022, 60, 156-183.	2.2	14
5	Identify severe track geometry defect combinations for maintenance planning. International Journal of Rail Transportation, 2022, 10, 95-113.	1.8	5
6	Dynamic performance of locomotive electric drive system under excitation from gear transmission and wheel-rail interaction. Vehicle System Dynamics, 2022, 60, 1806-1828.	2.2	26
7	Problems, assumptions and solutions in locomotive design, traction and operational studies. Railway Engineering Science, 2022, 30, 265-288.	2.7	21
8	Introduction of Rail Cleaning Effect into Locomotive Traction Study Based on Tribometer Measurements. , 2022, , .		1
9	Track Maintenance Reactions for Combined Track Defects. , 2022, , .		2
10	Adaptive simulation and integration method for wheel-rail contact problems in locomotive traction studies. Vehicle System Dynamics, 2022, 60, 4206-4225.	2.2	2
11	Prediction of rail surface damage in locomotive traction operations using laboratory-field measured and calibrated data. Engineering Failure Analysis, 2022, 135, 106165.	1.8	22
12	Parallel co-simulation of locomotive wheel wear and rolling contact fatigue in a heavy haul train operational environment. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 166-178.	1.3	9
13	Railway track longitudinal force model. Vehicle System Dynamics, 2021, 59, 155-170.	2.2	11
14	Fatigue life prediction for locomotive bogie frames using virtual prototype technique. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2021, 235, 1122-1131.	1.3	8
15	Rail Freight Vehicles. , 2021, , 423-435.		0
16	Implications of Lateral Coupler Forces for Rail Vehicle Curving Resistance. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	0.7	5
17	Experimental prototyping of the adhesion braking control system design concept for a mechatronic bogie. Railway Engineering Science, 2021, 29, 15-29.	2.7	4
18	Estimation of Wheelset Natural Vibration Characteristics Based on Transfer Matrix Method with Various Elastic Beam Models. Shock and Vibration, 2021, 2021, 1-15.	0.3	0

Нолсниа Wu

#	Article	IF	CITATIONS
19	Analysis of positioning of wayside charging stations for hybrid locomotive consists in heavy haul train operations. Railway Engineering Science, 2021, 29, 285-298.	2.7	6
20	Parallel computing in railway research. International Journal of Rail Transportation, 2020, 8, 111-134.	1.8	35
21	Assessing wagon pack sizes in longitudinal train dynamics simulations. Australian Journal of Mechanical Engineering, 2020, 18, 277-287.	1.5	4
22	Parallel computing of wheel-rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 1109-1116.	1.3	4
23	Research on the compression stability mechanism and its optimisation of coupler with arc surface contact. Vehicle System Dynamics, 2020, 58, 1553-1574.	2.2	8
24	Train braking simulation with wheel-rail adhesion model. Vehicle System Dynamics, 2020, 58, 1226-1241.	2.2	16
25	Dynamic Characteristics of Metro Trains under Rescue Conditions. Shock and Vibration, 2020, 2020, 1-12.	0.3	0
26	Train energy simulation with locomotive adhesion model. Railway Engineering Science, 2020, 28, 75-84.	2.7	16
27	Fatigue life assessment methods for railway vehicle bogie frames. Engineering Failure Analysis, 2020, 116, 104725.	1.8	42
28	Real-time multibody modeling and simulation of a scaled bogie test rig. Railway Engineering Science, 2020, 28, 146-159.	2.7	13
29	Preface to special issue on parallel computing and co-simulation in railway research. International Journal of Rail Transportation, 2020, 8, 109-110.	1.8	0
30	Locomotive Adhesion Control + Rail Friction Field Measurements = ?. Lecture Notes in Mechani Engineering, 2020, , 433-441.	cal _{.3}	5
31	Modelling Complex Series Combinations of Draft Gear Springs. Lecture Notes in Mechanical Engineering, 2020, , 591-598.	0.3	2
32	Rapid Charging Energy Storage System for a Hybrid Freight Locomotive. , 2020, , .		5
33	Wheel-Rail Interface Condition Estimation via Acoustic Sensors. , 2020, , .		3
34	Simulation of Long Train Dynamics with the Consideration of Wheel-Rail Contact. Lecture Notes in Mechanical Engineering, 2020, , 466-473.	0.3	0
35	Innovative Methodology for Heavy Haul Train-Track Interaction Dynamics Issues. Lecture Notes in Mechanical Engineering, 2020, , 899-907.	0.3	1
36	Simulation of Track-Locomotive Interactions in the Longitudinal Direction. Lecture Notes in Mechanical Engineering, 2020, , 769-774.	0.3	0

Нолдниа Wu

#	Article	IF	CITATIONS
37	A co-simulation approach for heavy haul long distance locomotive-track simulation studies. Vehicle System Dynamics, 2019, 57, 1363-1380.	2.2	30
38	Friction condition characterization for rail vehicle advanced braking system. Mechanical Systems and Signal Processing, 2019, 134, 106324.	4.4	25
39	Friction measurement and creep force modelling methodology for locomotive track damage studies. Wear, 2019, 432-433, 202932.	1.5	15
40	Review of adhesion estimation approaches for rail vehicles. International Journal of Rail Transportation, 2019, 7, 79-102.	1.8	22
41	Traction modelling in train dynamics. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 382-395.	1.3	13
42	Parallel Co-Simulation Method for Railway Vehicle-Track Dynamics. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	0.7	22
43	Feasibility in assessing the dipped rail joint defects through dynamic response of heavy haul locomotive. Journal of Modern Transportation, 2018, 26, 96-106.	2.5	8
44	Methodology to optimize wedge suspensions of three-piece bogies of railway vehicles. JVC/Journal of Vibration and Control, 2018, 24, 565-581.	1.5	19
45	Parallel multiobjective optimisations of draft gear designs. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 744-758.	1.3	13
46	Comparison of locomotive energy storage systems for heavy-haul operation. International Journal of Rail Transportation, 2018, 6, 1-15.	1.8	20
47	International benchmarking of longitudinal train dynamics simulators: results. Vehicle System Dynamics, 2018, 56, 343-365.	2.2	50
48	Preload on draft gear in freight trains. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 1615-1624.	1.3	7
49	Practical Modelling and Simulation of Polymer Draft Gear Connections. , 2018, , .		4
50	Heavy Haul Locomotive Traction Performance under the Implications of In-Train Forces. , 2018, , .		0
51	System Dynamics of Distributed-Power Train under Failed Brake Communication. , 2018, , .		Ο
52	Advanced Co-Simulation Technique for the Study of Heavy Haul Train and Locomotive Dynamics Behavior. , 2018, , .		0
53	Emerging rail vehicle design and simulation in train operational environment. Australian Journal of Mechanical Engineering, 2018, 16, 83-83.	1.5	0
54	Implementation of a wheel–rail temperature model for locomotive traction studies. International Journal of Rail Transportation, 2017, 5, 1-15.	1.8	14

Нолсниа Wu

#	Article	IF	CITATIONS
55	Longitudinal train dynamics. Vehicle System Dynamics, 2017, 55, 449-449.	2.2	8
56	International benchmarking of longitudinal train dynamics simulators: benchmarking questions. Vehicle System Dynamics, 2017, 55, 450-463.	2.2	32
57	Parallel Computing Scheme for Three-Dimensional Long Train System Dynamics. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	20
58	Railway Air Brake Model and Parallel Computing Scheme. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	19
59	Modelling, simulation and applications of longitudinal train dynamics. Vehicle System Dynamics, 2017, 55, 1498-1571.	2.2	85
60	An air brake model for longitudinal train dynamics studies. Vehicle System Dynamics, 2017, 55, 517-533.	2.2	55
61	Simulated Comparison of Energy Storage Systems for Heavy Haul Locomotives. , 2017, , .		1
62	Locomotive Studies Utilizing Multibody and Train Dynamics. , 2017, , .		3
63	Rail Cleaning Process and its Influence on Locomotive Performance. , 2017, , .		2
64	Comparisons of draft gear damping mechanisms. Vehicle System Dynamics, 2017, 55, 501-516.	2.2	24
65	Modelling polymer draft gears. Vehicle System Dynamics, 2016, 54, 1208-1225.	2.2	30
66	Applications of particle swarm optimization in the railway domain. International Journal of Rail Transportation, 2016, 4, 167-190.	1.8	48
67	Longitudinal train dynamics: an overview. Vehicle System Dynamics, 2016, 54, 1688-1714.	2.2	134
68	Parallel Computing Enables Whole-Trip Train Dynamics Optimizations. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	18
69	Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	22
70	Advanced dynamic modelling for friction draft gears. Vehicle System Dynamics, 2015, 53, 475-492.	2.2	49
71	Longitudinal dynamics and energy analysis for heavy haul trains. Journal of Modern Transportation, 2014, 22, 127-136.	2.5	46
72	Stabilizing mechanism and running behavior of couplers on heavy haul trains. Chinese Journal of Mechanical Engineering (English Edition), 2014, 27, 1211-1218.	1.9	6

Нолсниа Wu

#	Article	IF	CITATIONS
73	A review of dynamics modelling of friction draft gear. Vehicle System Dynamics, 2014, 52, 733-758.	2.2	76
74	A review of dynamics modelling of friction wedge suspensions. Vehicle System Dynamics, 2014, 52, 1389-1415.	2.2	34
75	Analysis of the rotation angle of a coupler used on heavy haul locomotives. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2014, 228, 835-844.	1.3	9
76	Methodology for Optimization of Friction Draft Gear Design. , 2014, , .		2
77	Coupler jackknifing and derailments of locomotives on tangent track. Vehicle System Dynamics, 2013, 51, 1784-1800.	2.2	41
78	Coupler rotation behaviour and its effect on heavy haul trains. Vehicle System Dynamics, 2013, 51, 1818-1838.	2.2	34
79	Large DOF Coupler/Draft Gear System Models for Rail Vehicles. Applied Mechanics and Materials, 2012, 197, 381-385.	0.2	1
80	The Curving Behaviour of Heavy-Haul Locomotive Couplers. Applied Mechanics and Materials, 0, 197, 409-414.	0.2	2
81	Characterising stochastic friction in railway draft gear. Vehicle System Dynamics, 0, , 1-13.	2.2	1
82	Hill-starting a heavy haul train with a 24-axle locomotive. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 0, , 095440972110082.	1.3	1
83	Long freight trains & long-term rail surface damage – a systems perspective. Vehicle System Dynamics, 0, , 1-24.	2.2	8