
Shuguang Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2110578/publications.pdf Version: 2024-02-01

SHUCHANG SHEN

#	Article	IF	CITATIONS
1	The influence of the size of aromatic monomers on the structure and catalytic activity of polymer solid acids. New Journal of Chemistry, 2022, 46, 767-778.	2.8	0
2	Rapid in situ synthesis of MgAl-LDH on η-Al2O3 for efficient hydrolysis of urea in wastewater. Journal of Catalysis, 2021, 395, 54-62.	6.2	11
3	Co-improvement of –COOH group and –SO3H group densities in carbon-based solid acid by a simple strategy. Molecular Catalysis, 2021, 506, 111539.	2.0	4
4	Preparation of a novel solid acid bearing sulfur-containing active groups and evaluation of its activity for cellulose hydrolysis. Fuel Processing Technology, 2021, 224, 107004.	7.2	7
5	Magnetic responsive Thermomyces lanuginosus lipase for biodiesel synthesis. Materials Today Communications, 2020, 24, 101197.	1.9	7
6	A simple strategy for the preparation of chlorine functionalized coal-based solid acid with rich carboxyl to improve the activity for hydrolysis of cellulose. Molecular Catalysis, 2020, 492, 111015.	2.0	7
7	Production of a gasoline blending component with high-octane and low sulfur from coal tar light oil over sulfided CoMoP/ÎAl2O3. Journal of Cleaner Production, 2019, 228, 965-973.	9.3	13
8	Urea Hydrolysis Over α-MnO2 Catalyst: Preparation, Characterizations and Influencing Factors. Catalysis Letters, 2019, 149, 2032-2042.	2.6	4
9	Double-adsorption functional carbon based solid acids derived from copyrolysis of PVC and PE for cellulose hydrolysis. Fuel, 2019, 237, 895-902.	6.4	37
10	The effect of difference in chemical composition between cellulose and lignin on carbon based solid acids applied for cellulose hydrolysis. Cellulose, 2018, 25, 1851-1863.	4.9	38
11	In Situ Growth of Highly Active MgAl Layered Double Hydroxide on ÎAl2O3 for Catalytic Hydrolysis of Urea in Wastewater. Catalysis Letters, 2018, 148, 1893-1903.	2.6	13
12	Influence of relative proportions of cellulose and lignin on carbon-based solid acid for cellulose hydrolysis. Molecular Catalysis, 2017, 442, 133-139.	2.0	27
13	High-performance carbon-based solid acid prepared by environmental and efficient recycling of PVC waste for cellulose hydrolysis. RSC Advances, 2016, 6, 91921-91929.	3.6	24
14	Removal of urea from wastewater by heterogeneous catalysis. Desalination and Water Treatment, 2015, 55, 70-76.	1.0	13
15	Hydrofining of Coal Tar Light Oil to Produce High Octane Gasoline Blending Components over γ-Al ₂ O ₃ - and ÎAl ₂ O ₃ -Supported Catalysts. Energy & Fuels, 2015, 29, 7005-7013.	5.1	26
16	Influence of reaction conditions on heterogeneous hydrolysis of cellulose over phenolic residue-derived solid acid. Fuel, 2014, 134, 573-578.	6.4	20
17	Catalytic hydrolysis of urea from wastewater using different aluminas by a fixed bed reactor. Environmental Science and Pollution Research, 2014, 21, 12563-12568.	5.3	15
18	Preparation of a novel carbon-based solid acid from cocarbonized starch and polyvinyl chloride for cellulose hydrolysis. Applied Catalysis A: General, 2014, 473, 70-74.	4.3	71

#	Article	IF	CITATIONS
19	Preparation of a carbonâ€based material derived from coking industry solid waste–phenol residue and its performance as hydrolysis catalysts. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 447-452.	1.5	Ο
20	Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid. Fuel, 2013, 113, 644-649.	6.4	45