Tunçer H Ã-zdamar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109983/publications.pdf Version: 2024-02-01

THNÃSER H Ã-ZDAMAR

#	Article	IF	CITATIONS
1	Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: use of citric acid as the carbon source. Enzyme and Microbial Technology, 1998, 23, 451-461.	3.2	92
2	Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochemical Engineering Journal, 2015, 95, 20-36.	3.6	85
3	Oxygen-transfer strategy and its regulation effects in serine alkaline protease production byBacillus licheniformis. Biotechnology and Bioengineering, 2000, 69, 301-311.	3.3	70
4	BIOPROCESS DEVELOPMENT FOR SERINE ALKALINE PROTEASE PRODUCTION: A REVIEW. Reviews in Chemical Engineering, 2001, 17, 1-62.	4.4	70
5	Metabolic flux analysis for serine alkaline protease fermentation byBacillus licheniformis in a defined medium: Effects of the oxygen transfer rate. , 1999, 64, 151-167.		61
6	The influence of carbon sources on recombinant-human- growth-hormone production by Pichia pastoris is dependent on phenotype: a comparison of Muts and Mut+ strains. Biotechnology and Applied Biochemistry, 2009, 52, 245.	3.1	49
7	Carbon sources affect metabolic capacities of Bacillus species for the production of industrial enzymes: theoretical analyses for serine and neutral proteases and α-amylase. Biochemical Engineering Journal, 2001, 8, 61-81.	3.6	44
8	Influence of pH conditions on metabolic regulations in serine alkaline protease production by Bacillus licheniformis. Enzyme and Microbial Technology, 2002, 31, 685-697.	3.2	44
9	Influence of pH on recombinant human growth hormone production by <i>Pichia pastoris</i> . Journal of Chemical Technology and Biotechnology, 2010, 85, 1628-1635.	3.2	44
10	Mass flux balance-based model and metabolic pathway engineering analysis for serine alkaline protease synthesis by Bacillus licheniformis. Enzyme and Microbial Technology, 1999, 24, 621-635.	3.2	37
11	Bioconversion of trans-cinnamic acid to l-phenylalanine by l-phenylalanine ammonia-lyase of Rhodotorula glutinis: Parameters and kinetics. Enzyme and Microbial Technology, 1995, 17, 445-452.	3.2	32
12	Bioreactor operation parameters as tools for metabolic regulations in fermentation processes: influence of pH conditions. Chemical Engineering Science, 2003, 58, 759-766.	3.8	31
13	Expression system for recombinant human growth hormone production from <i>Bacillus subtilis</i> . Biotechnology Progress, 2009, 25, 75-84.	2.6	28
14	Expression System for Synthesis and Purification of Recombinant Human Growth Hormone in Pichia pastoris and Structural Analysis by MALDI-ToF Mass Spectrometry. Biotechnology Progress, 2008, 24, 221-226.	2.6	25
15	Separation of the protease enzymes ofBacillus licheniformis from the fermentation medium by crossflow ultrafiltration. Journal of Chemical Technology and Biotechnology, 2000, 75, 491-499.	3.2	23
16	Fermentation characteristics of l-tryptophan production by thermoacidophilic Bacillus acidocaldarius in a defined medium. Enzyme and Microbial Technology, 2006, 39, 1077-1088.	3.2	23
17	Analyses of extracellular protein production in Bacillus subtilis – I: Genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochemical Engineering Journal, 2017, 127, 229-241.	3.6	23
18	Effect of ionic environments on the adsorption and diffusion characteristics of serine alkaline protease enzyme in polyethersulfone ultrafiltration membranes. Journal of Colloid and Interface Science, 2006, 299, 806-814.	9.4	20

Tunçer H Özdamar

#	Article	IF	CITATIONS
19	Effect of coâ€substrate sorbitol different feeding strategies on human growth hormone production by recombinant <i>Pichia pastoris</i> . Journal of Chemical Technology and Biotechnology, 2013, 88, 1631-1640.	3.2	20
20	Human growth hormone-specific aptamer identification using improved oligonucleotide ligand evolution method. Protein Expression and Purification, 2010, 69, 21-28.	1.3	19
21	Serine alkaline protease overproduction capacity of Bacillus licheniformis. Enzyme and Microbial Technology, 2000, 26, 45-60.	3.2	18
22	Engineered Deregulation of Expression in Yeast with Designed Hybridâ€Promoter Architectures in Coordination with Discovered Master Regulator Transcription Factor. Advanced Biology, 2020, 4, e1900172.	3.0	18
23	Catalytic effect of NaOH on the liquid-phase oxidation of 2-isopropylnaphthalene. Applied Catalysis A: General, 1998, 172, 59-66.	4.3	17
24	BIOREACTION NETWORK FLUX ANALYSIS FOR INDUSTRIAL MICROORGANISMS: A REVIEW. Reviews in Chemical Engineering, 2002, 18, .	4.4	15
25	Overexpression of a serine alkaline protease gene in Bacillus licheniformis and its impact on the metabolic reaction network. Enzyme and Microbial Technology, 2003, 32, 706-720.	3.2	15
26	Metabolic flux analyses for serine alkaline protease production. Enzyme and Microbial Technology, 2000, 27, 793-805.	3.2	14
27	Utilization of pretreated molasses for serine alkaline protease production with recombinant bacillus species. Chemical Engineering Communications, 2003, 190, 630-644.	2.6	14
28	Methanol feeding strategy design enhances recombinant human growth hormone production by <i>Pichia pastoris</i> . Journal of Chemical Technology and Biotechnology, 2016, 91, 664-671.	3.2	14
29	Selective oxidation of 2-isopropylnaphthalene to 2-isopropylnaphthalenehydroperoxide in a gas–liquid reaction system using CuO+NaOHaq catalyst. Chemical Engineering Journal, 1998, 71, 37-48.	12.7	12
30	BF3·H3PO4 catalyst preparation and use in the alkylation of naphthalene with propene. Applied Catalysis, 1990, 66, 25-35.	0.8	10
31	Separation kinetics of l-phenylalanine by ion-exchange process. Biochemical Engineering Journal, 1998, 2, 101-112.	3.6	10
32	Product and by-product distributions in glutamic acid fermentation by Brevibacterium flavum: effects of the oxygen transfer. Biochemical Engineering Journal, 2001, 9, 91-101.	3.6	10
33	Metabolic flux analysis for human therapeutic protein productions and hypothesis for new therapeutical strategies in medicine. Biochemical Engineering Journal, 2002, 11, 49-68.	3.6	10
34	Metabolic engineering of aromatic group amino acid pathway in Bacillus subtilis for L-phenylalanine production. Chemical Engineering Science, 2004, 59, 5019-5026.	3.8	10
35	Feeding strategy design for recombinant human growth hormone production by Bacillus subtilis. Bioprocess and Biosystems Engineering, 2015, 38, 1855-1865.	3.4	9
36	Hybrid fedâ€batch bioreactor operation design: control of substrate uptake enhances recombinant protein production in highâ€cellâ€density fermentations. Journal of Chemical Technology and Biotechnology, 2018, 93, 3326-3335.	3.2	9

Tunçer H Özdamar

#	Article	IF	CITATIONS
37	Overexpression of serine alkaline protease encoding gene in Bacillus species: performance analyses. Enzyme and Microbial Technology, 2003, 33, 967-974.	3.2	8
38	Solvent–catalyst interactions in the decomposition process of 2-isopropylnaphthalenehydroperoxide into 2-naphthol and acetone. Applied Catalysis A: General, 1999, 183, 377-393.	4.3	7
39	Effects of organic and inorganic initiator-catalysts on the liquid-phase oxidation of 2-isopropyInaphthalene. Applied Catalysis A: General, 2000, 197, 279-287.	4.3	7
40	Parametric continuous feed stream design to fine-tune fed-batch bioreactor performance: recombinant human growth hormone production inBacillus subtilis. Journal of Chemical Technology and Biotechnology, 2016, 91, 2740-2750.	3.2	7
41	EFFECTS OF PROCESS PARAMETERS ON THE KINETICS OF THE DECOMPOSITION OF 2-ISOPROPYLNAPHTHALENEHYDROPEROXIDE INTO 2-NAPHTHOL AND ACETONE. Reviews in Chemical Engineering, 2000, 16, .	4.4	6
42	Enzyme-ion exchanger interactions in serine alkaline protease separation: theory, equilibria and kinetics. Biochemical Engineering Journal, 2002, 12, 193-204.	3.6	6
43	Regulatory effects of alanine-group amino acids on serine alkaline protease production by recombinant Bacillus licheniformis. Biotechnology and Applied Biochemistry, 2003, 37, 165.	3.1	5
44	Alkylation of naphthalene by propene with BF3.H3PO4 catalyst in a three-phase system. The Chemical Engineering Journal Journal and the Biochemical Engineering Journal, 1994, 53, 173-181.	0.1	4
45	Bioreaction network flux analysis for human protein producing Bacillus subtilis based on genome-scale model. Chemical Engineering Science, 2010, 65, 574-580.	3.8	4
46	Decomposition of 2-Isopropylnaphthalene Hydroperoxide into 2-Naphthol and Acetone in the Presence of Acetic Acid and H2O2. Industrial & Engineering Chemistry Research, 1999, 38, 3838-3846.	3.7	3
47	Decomposition of 2-isopropylnaphthalenehydroperoxide into 2-naphthol and acetone: reactor operation parameters. Applied Catalysis A: General, 2003, 238, 85-97.	4.3	2
48	Fermentation and oxygen transfer characteristics in serine alkaline protease production by recombinantBacillus subtilisin molasses-based complex medium. Journal of Chemical Technology and Biotechnology, 2004, 79, 1243-1250.	3.2	2
49	Biotechnology in Turkey: An overview. Biotechnology Journal, 2009, 4, 981-991.	3.5	2
50	Analyses of extracellular protein production in Bacillus subtilis – II: Responses of reaction network to oxygen transfer at transcriptional level. Biochemical Engineering Journal, 2017, 127, 242-261.	3.6	2
51	Metabolic flux analysis for serine alkaline protease fermentation by Bacillus licheniformis in a defined medium: Effects of the oxygen transfer rate. Biotechnology and Bioengineering, 1999, 64, 151-167.	3.3	1
52	Nucleophile influence on the complex reaction network of 2-isopropylnaphthalene hydroperoxide decomposition. Chemical Engineering and Processing: Process Intensification, 2005, 44, 1197-1206.	3.6	0
53	Protease Secretion Capacity and Performance Analysis of Recombinant Bacillus Species. , 2001, , 383-392.		0
54	Metabolic Network Analysis for Human Therapeutic Protein Productions: Effects of the P/O Ratio. ,		0

2001, , 277-288.

#	Article	IF	CITATIONS
55	Crossflow Ultrafiltration of Bacillus Licheniformis Fermentation Medium to Separate Protease Enzymes. , 2001, , 171-179.		0