


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/210980/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | lF         | CITATIONS      |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|
| 1  | Analysis of SSR and SNP markers. , 2022, , 131-144.                                                                                                                                                                                     |            | 3              |
| 2  | Genetic variation, heritability, genetic advance, micronutrients, and grain morphology trait<br>associations in EMS induced mutant lines of wheat (Triticum aestivum L.). Genetic Resources and Crop<br>Evolution, 2022, 69, 2141-2158. | 1.6        | 3              |
| 3  | Protein targeting to starch 1, a functional protein of starch biosynthesis in wheat (Triticum aestivum) Tj ETQq1                                                                                                                        | 1 0.784314 | 4 rgBT /Overle |
| 4  | High resistant starch mutant wheat †TAC 35' reduced glycemia and ameliorated high fat diet induced metabolic dysregulation in mice. Journal of Cereal Science, 2022, 105, 103459.                                                       | 3.7        | 2              |
| 5  | Whole genome re-sequencing of indian wheat genotypes for identification of genomic variants for grain iron and zinc content. Molecular Biology Reports, 2022, 49, 7123-7133.                                                            | 2.3        | 3              |
| 6  | Trillium govanianum. , 2021, , 243-257.                                                                                                                                                                                                 |            | 0              |
| 7  | Understanding the regulatory relationship of abscisic acid and bZIP transcription factors towards amylose biosynthesis in wheat. Molecular Biology Reports, 2021, 48, 2473-2483.                                                        | 2.3        | 5              |
| 8  | Gene Expression and Proteomics Studies Suggest an Involvement of Multiple Pathways Under Day and<br>Day–Night Combined Heat Stresses During Grain Filling in Wheat. Frontiers in Plant Science, 2021, 12,<br>660446.                    | 3.6        | 10             |
| 9  | Identification of multiple RNAs using feature fusion. Briefings in Bioinformatics, 2021, 22, .                                                                                                                                          | 6.5        | 1              |
| 10 | Genome-wide analysis of RING-type E3 ligase family identifies potential candidates regulating high amylose starch biosynthesis in wheat (Triticum aestivum L.). Scientific Reports, 2021, 11, 11461.                                    | 3.3        | 8              |
| 11 | Genotyping-by-sequencing based QTL mapping identified a novel waxy allele contributing to high amylose starch in wheat. Euphytica, 2021, 217, 1.                                                                                        | 1.2        | 4              |
| 12 | Decoding the genome of superior chapatti quality Indian wheat variety â€~C 306' unravelled novel genomic variants for chapatti and nutrition quality related genes. Genomics, 2021, 113, 1919-1929.                                     | 2.9        | 5              |
| 13 | Development and evaluation of chapatti quality of high amylose wheat mutants on the basis of<br>physicochemical, textural and sensory characteristics. LWT - Food Science and Technology, 2020, 133,<br>110051.                         | 5.2        | 7              |
| 14 | Large-scale identification and characterization of phenolic compounds and their marker–trait<br>association in wheat. Euphytica, 2020, 216, 1.                                                                                          | 1.2        | 12             |
| 15 | Genome-wide identification and characterization of novel non-coding RNA-derived SSRs in wheat.<br>Molecular Biology Reports, 2020, 47, 6111-6125.                                                                                       | 2.3        | 12             |
| 16 | Marker-trait association identified candidate starch biosynthesis pathway genes for starch and<br>amylose–lipid complex gelatinization in wheat (Triticum aestivum L.). Euphytica, 2020, 216, 1.                                        | 1.2        | 7              |
| 17 | Development and characterization of bZIP transcription factor based SSRs in wheat. Gene, 2020, 756, 144912.                                                                                                                             | 2.2        | 8              |
| 18 | Sound as a stimulus in associative learning for heat stress in Arabidopsis. Communicative and Integrative Biology, 2020, 13, 1-5.                                                                                                       | 1.4        | 11             |

Joy Roy

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Novel intron length polymorphic (ILP) markers from starch biosynthesis genes reveal genetic<br>relationships in Indian wheat varieties and related species. Molecular Biology Reports, 2020, 47,<br>3485-3500.                                                 | 2.3 | 12        |
| 20 | Identification and characterization of long non-coding RNAs regulating resistant starch biosynthesis<br>in bread wheat (Triticum aestivum L.). Genomics, 2020, 112, 3065-3074.                                                                                 | 2.9 | 21        |
| 21 | Development of intron length polymorphic (ILP) markers in onion (Allium cepa L.), and their<br>cross-species transferability in garlic (A. sativum L.) and wild relatives. Genetic Resources and Crop<br>Evolution, 2019, 66, 1379-1388.                       | 1.6 | 27        |
| 22 | Pivotal role of bZIPs in amylose biosynthesis by genome survey and transcriptome analysis in wheat<br>(Triticum aestivum L.) mutants. Scientific Reports, 2018, 8, 17240.                                                                                      | 3.3 | 30        |
| 23 | Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between<br>Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread)<br>Quality. Frontiers in Plant Science, 2016, 7, 1870. | 3.6 | 48        |
| 24 | Development of EMS-induced mutation population for amylose and resistant starch variation in bread<br>wheat (Triticum aestivum) and identification of candidate genes responsible for amylose variation.<br>BMC Plant Biology, 2016, 16, 217.                  | 3.6 | 54        |
| 25 | Expression patterns of genes involved in starch biosynthesis during seed development in bread wheat<br>(Triticum aestivum). Molecular Breeding, 2015, 35, 1.                                                                                                   | 2.1 | 32        |
| 26 | Genome-wide transcriptome study in wheat identified candidate genes related to processing quality,<br>majority of them showing interaction (quality x development) and having temporal and spatial<br>distributions. BMC Genomics, 2014, 15, 29.               | 2.8 | 36        |