List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109721/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016, 11, 218-230.	31.5	1,833
2	Iron Encapsulated within Podâ€like Carbon Nanotubes for Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 371-375.	13.8	1,152
3	Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen. Science, 2014, 344, 616-619.	12.6	1,113
4	Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS ₂ surface via single-atom metal doping. Energy and Environmental Science, 2015, 8, 1594-1601.	30.8	1,109
5	Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2015, 54, 2100-2104.	13.8	1,092
6	Selective conversion of syngas to light olefins. Science, 2016, 351, 1065-1068.	12.6	1,063
7	Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications, 2012, 3, 699.	12.8	985
8	Toward N-Doped Graphene via Solvothermal Synthesis. Chemistry of Materials, 2011, 23, 1188-1193.	6.7	984
9	Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews, 2017, 117, 8497-8520.	47.7	961
10	Size-Dependent Electrocatalytic Reduction of CO ₂ over Pd Nanoparticles. Journal of the American Chemical Society, 2015, 137, 4288-4291.	13.7	929
11	Interface-Confined Ferrous Centers for Catalytic Oxidation. Science, 2010, 328, 1141-1144.	12.6	866
12	Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nature Materials, 2007, 6, 507-511.	27.5	864
13	Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy and Environmental Science, 2014, 7, 1919-1923.	30.8	845
14	Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications. Chemical Reviews, 2019, 119, 1806-1854.	47.7	745
15	A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Science Advances, 2015, 1, e1500462.	10.3	719
16	Effect of Confinement in Carbon Nanotubes on the Activity of Fischerâ^'Tropsch Iron Catalyst. Journal of the American Chemical Society, 2008, 130, 9414-9419.	13.7	709
17	Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy and Environmental Science, 2016, 9, 123-129.	30.8	683
18	Coordinatively unsaturated nickel–nitrogen sites towards selective and high-rate CO ₂ electroreduction. Energy and Environmental Science, 2018, 11, 1204-1210.	30.8	622

#	Article	IF	CITATIONS
19	The Effects of Confinement inside Carbon Nanotubes on Catalysis. Accounts of Chemical Research, 2011, 44, 553-562.	15.6	597
20	Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 2017, 40, 1-8.	16.0	549
21	Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study. Journal of Catalysis, 2011, 282, 183-190.	6.2	545
22	Ti ₃ C ₂ MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. ACS Nano, 2017, 11, 4792-4800.	14.6	544
23	Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production. Nature Communications, 2017, 8, 14430.	12.8	488
24	Enhancing CO ₂ Electroreduction with the Metal–Oxide Interface. Journal of the American Chemical Society, 2017, 139, 5652-5655.	13.7	468
25	Nitrogenâ€Doped sp ² â€Hybridized Carbon as a Superior Catalyst for Selective Oxidation. Angewandte Chemie - International Edition, 2013, 52, 2109-2113.	13.8	463
26	Surface chemistry and catalysis confined under two-dimensional materials. Chemical Society Reviews, 2017, 46, 1842-1874.	38.1	412
27	Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chemical Communications, 2011, 47, 2432-2434.	4.1	394
28	Highly doped and exposed Cu(<scp>i</scp>)–N active sites within graphene towards efficient oxygen reduction for zinc–air batteries. Energy and Environmental Science, 2016, 9, 3736-3745.	30.8	374
29	Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms. CheM, 2018, 4, 1902-1910.	11.7	350
30	The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere, 2003, 50, 39-46.	8.2	338
31	Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Advanced Materials, 2017, 29, 1606967.	21.0	334
32	Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis. CheM, 2019, 5, 2296-2325.	11.7	331
33	Tuning of Redox Properties of Iron and Iron Oxides via Encapsulation within Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 7421-7426.	13.7	316
34	Podlike Nâ€Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: Highâ€Performance Counter Electrode Materials for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 7023-7027.	13.8	315
35	One-Step Device Fabrication of Phosphorene and Graphene Interdigital Micro-Supercapacitors with High Energy Density. ACS Nano, 2017, 11, 7284-7292.	14.6	312
36	High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc–air battery. Nano Energy, 2015, 13, 387-396.	16.0	311

#	Article	IF	CITATIONS
37	Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nature Catalysis, 2021, 4, 242-250.	34.4	308
38	Surface functionalization of ZIF-8 with ammonium ferric citrate toward high exposure of Fe-N active sites for efficient oxygen and carbon dioxide electroreduction. Nano Energy, 2017, 38, 281-289.	16.0	301
39	Bottom-Up Fabrication of Sulfur-Doped Graphene Films Derived from Sulfur-Annulated Nanographene for Ultrahigh Volumetric Capacitance Micro-Supercapacitors. Journal of the American Chemical Society, 2017, 139, 4506-4512.	13.7	294
40	Direct conversion of methane under nonoxidative conditions. Journal of Catalysis, 2003, 216, 386-395.	6.2	289
41	Crystallization and Si incorporation mechanisms of SAPO-34. Microporous and Mesoporous Materials, 2002, 53, 97-108.	4.4	274
42	Enhanced capacitance of manganese oxide via confinement inside carbon nanotubes. Chemical Communications, 2010, 46, 3905.	4.1	270
43	In Situ Reconstruction of a Hierarchical Snâ€Cu/SnO _{<i>x</i>} Core/Shell Catalyst for Highâ€Performance CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2020, 59, 4814-4821.	13.8	270
44	Pd-Containing Nanostructures for Electrochemical CO ₂ Reduction Reaction. ACS Catalysis, 2018, 8, 1510-1519.	11.2	261
45	Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors. Energy Storage Materials, 2017, 6, 70-97.	18.0	260
46	Synergetic Effect of Surface and Subsurface Ni Species at Ptâ^'Ni Bimetallic Catalysts for CO Oxidation. Journal of the American Chemical Society, 2011, 133, 1978-1986.	13.7	257
47	Confinement Catalysis with 2D Materials for Energy Conversion. Advanced Materials, 2019, 31, e1901996.	21.0	257
48	Synergistic Catalysis over Ironâ€Nitrogen Sites Anchored with Cobalt Phthalocyanine for Efficient CO ₂ Electroreduction. Advanced Materials, 2019, 31, e1903470.	21.0	256
49	Interaction of oxygen with silver at high temperature and atmospheric pressure: A spectroscopic and structural analysis of a strongly bound surface species. Physical Review B, 1996, 54, 2249-2262.	3.2	248
50	Understanding nano effects in catalysis. National Science Review, 2015, 2, 183-201.	9.5	246
51	Toward Fundamentals of Confined Catalysis in Carbon Nanotubes. Journal of the American Chemical Society, 2015, 137, 477-482.	13.7	240
52	Electrochemically Scalable Production of Fluorine-Modified Graphene for Flexible and High-Energy Ionogel-Based Microsupercapacitors. Journal of the American Chemical Society, 2018, 140, 8198-8205.	13.7	240
53	Facile Autoreduction of Iron Oxide/Carbon Nanotube Encapsulates. Journal of the American Chemical Society, 2006, 128, 3136-3137.	13.7	239
54	Highâ€Temperature CO ₂ Electrolysis in Solid Oxide Electrolysis Cells: Developments, Challenges, and Prospects. Advanced Materials, 2019, 31, e1902033.	21.0	237

#	Article	IF	CITATIONS
55	A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dyeâ€&ensitized Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 6708-6712.	13.8	236
56	Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy, 2017, 32, 353-358.	16.0	234
57	Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability. Journal of the American Chemical Society, 2006, 128, 15756-15764.	13.7	233
58	Reactions over catalysts confined in carbon nanotubes. Chemical Communications, 2008, , 6271.	4.1	232
59	Cobalt nanoparticles encapsulated in nitrogen-doped carbon as a bifunctional catalyst for water electrolysis. Journal of Materials Chemistry A, 2014, 2, 20067-20074.	10.3	231
60	Interface-Confined Oxide Nanostructures for Catalytic Oxidation Reactions. Accounts of Chemical Research, 2013, 46, 1692-1701.	15.6	229
61	Confined catalysis under two-dimensional materials. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5930-5934.	7.1	213
62	Size effect of graphene on electrocatalytic activation of oxygen. Chemical Communications, 2011, 47, 10016.	4.1	212
63	Highly active reduction of oxygen on a FeCo alloy catalyst encapsulated in pod-like carbon nanotubes with fewer walls. Journal of Materials Chemistry A, 2013, 1, 14868.	10.3	211
64	Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27, 35-43.	16.0	211
65	Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Research, 2017, 10, 2181-2191.	10.4	208
66	Visualizing Chemical Reactions Confined under Graphene. Angewandte Chemie - International Edition, 2012, 51, 4856-4859.	13.8	207
67	Recent progress in methane dehydroaromatization: From laboratory curiosities to promising technology. Journal of Energy Chemistry, 2013, 22, 1-20.	12.9	206
68	Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts. Catalysis Letters, 2003, 91, 155-167.	2.6	204
69	Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin, 2017, 62, 724-740.	9.0	198
70	Conductive Microporous Covalent Triazineâ€Based Framework for Highâ€Performance Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2018, 57, 7992-7996.	13.8	193
71	Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility. Energy and Environmental Science, 2019, 12, 1534-1541.	30.8	192
72	On the Induction Period of Methane Aromatization over Mo-Based Catalysts. Journal of Catalysis, 2000, 194, 105-114.	6.2	189

XINHE BAO

#	Article	IF	CITATIONS
73	Role of Manganese Oxide in Syngas Conversion to Light Olefins. ACS Catalysis, 2017, 7, 2800-2804.	11.2	188
74	Carbide-Supported Au Catalysts for Water–Gas Shift Reactions: A New Territory for the Strong Metal–Support Interaction Effect. Journal of the American Chemical Society, 2018, 140, 13808-13816.	13.7	188
75	Shapeâ€5elective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie - International Edition, 2018, 57, 4692-4696.	13.8	185
76	In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Coâ€Đoped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^'} <i>_δ</i> Cathode for CO ₂ Electrolysis. Advanced Materials, 2020, 32, e1906193.	21.0	185
77	Graphene cover-promoted metal-catalyzed reactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17023-17028.	7.1	183
78	Highâ€Valence Nickel Singleâ€Atom Catalysts Coordinated to Oxygen Sites for Extraordinarily Activating Oxygen Evolution Reaction. Advanced Science, 2020, 7, 1903089.	11.2	182
79	Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene. Nature Communications, 2014, 5, 3688.	12.8	181
80	Oxide–Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer–Tropsch Synthesis. Chemical Reviews, 2021, 121, 6588-6609.	47.7	180
81	Highâ€Rate CO ₂ Electroreduction to C ₂₊ Products over a Copper opper Iodide Catalyst. Angewandte Chemie - International Edition, 2021, 60, 14329-14333.	13.8	177
82	Scalable Fabrication of Photochemically Reduced Graphene-Based Monolithic Micro-Supercapacitors with Superior Energy and Power Densities. ACS Nano, 2017, 11, 4283-4291.	14.6	176
83	Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. Journal of Catalysis, 2005, 229, 446-458.	6.2	174
84	Ag/SiO2: a novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chemical Communications, 2005, , 5298.	4.1	174
85	Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angewandte Chemie - International Edition, 2007, 46, 962-965.	13.8	174
86	Unusual Mesoporous SBA-15 with Parallel Channels Running along the Short Axis. Journal of the American Chemical Society, 2004, 126, 7440-7441.	13.7	173
87	Stackedâ€Layer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance. Advanced Materials, 2017, 29, 1602960.	21.0	173
88	Growth Mechanism of Graphene on Ru(0001) and O ₂ Adsorption on the Graphene/Ru(0001) Surface. Journal of Physical Chemistry C, 2009, 113, 8296-8301.	3.1	172
89	Synthesis and characterization of microporous carbon nitride. Microporous and Mesoporous Materials, 2008, 110, 216-222.	4.4	167
90	Supported Pd–Cu Bimetallic Nanoparticles That Have High Activity for the Electrochemical Oxidation of Methanol. Chemistry - A European Journal, 2012, 18, 4887-4893.	3.3	166

#	Article	IF	CITATIONS
91	Probing the Electronic Effect of Carbon Nanotubes in Catalysis: NH ₃ Synthesis with Ru Nanoparticles. Chemistry - A European Journal, 2010, 16, 5379-5384.	3.3	164
92	Reaction-Induced Strong Metal–Support Interactions between Metals and Inert Boron Nitride Nanosheets. Journal of the American Chemical Society, 2020, 142, 17167-17174.	13.7	164
93	Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na+ ions on the activity and hydrothermal stability. Applied Catalysis B: Environmental, 2017, 217, 421-428.	20.2	161
94	On the nature of the active state of silver during catalytic oxidation of methanol. Catalysis Letters, 1993, 22, 215-225.	2.6	160
95	The Effect of Water on the CO Oxidation on Ag(111) and Au(111) Surfaces: A First-Principle Study. Journal of Physical Chemistry C, 2008, 112, 17303-17310.	3.1	160
96	All-solid-state flexible planar lithium ion micro-capacitors. Energy and Environmental Science, 2018, 11, 2001-2009.	30.8	160
97	The Road Towards Planar Microbatteries and Microâ€Supercapacitors: From 2D to 3D Device Geometries. Advanced Materials, 2019, 31, e1900583.	21.0	160
98	<i>>In situ</i> exsolved FeNi ₃ nanoparticles on nickel doped Sr ₂ Fe _{1.5} Mo _{0.5} O _{6â^î} perovskite for efficient electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2019, 7, 11967-11975.	10.3	159
99	Chain Mail for Catalysts. Angewandte Chemie - International Edition, 2020, 59, 15294-15297.	13.8	159
100	Enhancing CO2 electrolysis performance with vanadium-doped perovskite cathode in solid oxide electrolysis cell. Nano Energy, 2018, 50, 43-51.	16.0	158
101	Direct conversion of syngas to aromatics. Chemical Communications, 2017, 53, 11146-11149.	4.1	156
102	On the acid-dealumination of USY zeolite: a solid state NMR investigation. Journal of Molecular Catalysis A, 2003, 194, 153-167.	4.8	153
103	Porous Palladium Nanoflowers that Have Enhanced Methanol Electro-Oxidation Activity. Journal of Physical Chemistry C, 2009, 113, 1001-1005.	3.1	153
104	Structure Sensitivity in Single-Atom Catalysis toward CO ₂ Electroreduction. ACS Energy Letters, 2021, 6, 713-727.	17.4	149
105	Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. National Science Review, 2020, 7, 64-72.	9.5	148
106	Catalysis for Selected C1 Chemistry. CheM, 2020, 6, 2497-2514.	11.7	148
107	Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization. Microporous and Mesoporous Materials, 2006, 88, 244-253.	4.4	147
108	Title is missing!. Catalysis Letters, 2000, 70, 67-73.	2.6	146

#	Article	IF	CITATIONS
109	Structural and electronic optimization of graphene encapsulating binary metal for highly efficient water oxidation. Nano Energy, 2018, 52, 494-500.	16.0	145
110	Enhancing CO ₂ Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angewandte Chemie - International Edition, 2020, 59, 22408-22413.	13.8	145
111	Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nature Communications, 2017, 8, 14039.	12.8	144
112	N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chemical Communications, 2015, 51, 217-220.	4.1	142
113	2D mesoporous MnO2 nanosheets for high-energy asymmetric micro-supercapacitors in water-in-salt gel electrolyte. Energy Storage Materials, 2019, 18, 397-404.	18.0	140
114	Overturning CO ₂ Hydrogenation Selectivity with High Activity via Reaction-Induced Strong Metal–Support Interactions. Journal of the American Chemical Society, 2022, 144, 4874-4882.	13.7	139
115	In situsolid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chemical Society Reviews, 2012, 41, 192-210.	38.1	136
116	Direct Observation of the Active Center for Methane Dehydroaromatization Using an Ultrahigh Field ⁹⁵ Mo NMR Spectroscopy. Journal of the American Chemical Society, 2008, 130, 3722-3723.	13.7	134
117	Solid-state MAS NMR studies on the hydrothermal stability of the zeolite catalysts for residual oil selective catalytic cracking. Journal of Catalysis, 2004, 228, 234-242.	6.2	132
118	Grapheneâ€Based Linear Tandem Microâ€Supercapacitors with Metalâ€Free Current Collectors and Highâ€Voltage Output. Advanced Materials, 2017, 29, 1703034.	21.0	132
119	Progress of Photodetectors Based on the Photothermoelectric Effect. Advanced Materials, 2019, 31, e1902044.	21.0	132
120	Hexagonal Boron Nitride Cover on Pt(111): A New Route to Tune Molecule–Metal Interaction and Metal-Catalyzed Reactions. Nano Letters, 2015, 15, 3616-3623.	9.1	131
121	Carbon doping of hexagonal boron nitride porous materials toward CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 1832-1839.	10.3	131
122	Carbonaceous Deposition on Mo/HMCM-22 Catalysts for Methane Aromatization: A TP Technique Investigation. Journal of Catalysis, 2002, 208, 260-269.	6.2	130
123	Enhanced CO ₂ Methanation Activity of Ni/Anatase Catalyst by Tuning Strong Metal–Support Interactions. ACS Catalysis, 2019, 9, 6342-6348.	11.2	127
124	Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction. Nano Energy, 2019, 61, 611-616.	16.0	127
125	Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: Recent advance in cathodes. Journal of Energy Chemistry, 2017, 26, 839-853.	12.9	125
126	Combined Redox Couples for Catalytic Oxidation of Methane by Dioxygen at Low Temperatures. Journal of the American Chemical Society, 2006, 128, 16028-16029.	13.7	123

#	Article	IF	CITATIONS
127	Experimental observation of quantum oscillation of surface chemical reactivities. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9204-9208.	7.1	123
128	Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina. Materials Letters, 2008, 62, 1297-1301.	2.6	123
129	Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. Journal of Energy Chemistry, 2018, 27, 25-42.	12.9	123
130	Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves. Applied Catalysis A: General, 2004, 273, 185-191.	4.3	122
131	Distance Synergy of MoS ₂ â€Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 10502-10507.	13.8	122
132	Arbitrary-Shaped Graphene-Based Planar Sandwich Supercapacitors on One Substrate with Enhanced Flexibility and Integration. ACS Nano, 2017, 11, 2171-2179.	14.6	121
133	Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy, 2018, 52, 345-350.	16.0	121
134	Methane Dehydro-aromatization under Nonoxidative Conditions over Mo/HZSM-5 Catalysts: EPR Study of the Mo Species on/in the HZSM-5 Zeolite. Journal of Catalysis, 2000, 189, 314-325.	6.2	120
135	Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density. Journal of Materials Chemistry A, 2019, 7, 9478-9485.	10.3	120
136	Engineered Complex Emulsion System:Â Toward Modulating the Pore Length and Morphological Architecture of Mesoporous Silicas. Journal of Physical Chemistry B, 2006, 110, 25908-25915.	2.6	116
137	Oxygen-induced restructuring of Ag(111). Surface Science, 1993, 284, 14-22.	1.9	115
138	Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. Journal of Materials Chemistry, 2008, 18, 5782.	6.7	114
139	A nickel nanocatalyst within a h-BN shell for enhanced hydrogen oxidation reactions. Chemical Science, 2017, 8, 5728-5734.	7.4	113
140	Highly efficient H ₂ production from H ₂ S <i>via</i> a robust graphene-encapsulated metal catalyst. Energy and Environmental Science, 2020, 13, 119-126.	30.8	113
141	Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles. Chemical Communications, 2006, , 1322.	4.1	112
142	Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector. Nature Communications, 2019, 10, 138.	12.8	112
143	Methane Dehydro-aromatization over Mo/HZSM-5 in the Absence of Oxygen: A Multinuclear Solid-State NMR Study of the Interaction between Supported Mo Species and HZSM-5 Zeolite with Different Crystal Sizes. Journal of Catalysis, 1999, 188, 393-402.	6.2	111
144	Direct synthesis of uniform hollow carbon spheres by a self-assembly template approachElectronic supplementary information (ESI) available: SEM pictures of the products from simple mixing. See http://www.rsc.org/suppdata/cc/b2/b205723a/. Chemical Communications, 2002, , 1948-1949.	4.1	111

#	Article	IF	CITATIONS
145	Restructuring and Redispersion of Silver on SiO2under Oxidizing/Reducing Atmospheres and Its Activity toward CO Oxidation. Journal of Physical Chemistry B, 2005, 109, 15842-15848.	2.6	111
146	Methane dehydroaromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: Identification and preparation of the Mo active species. Journal of Catalysis, 2006, 239, 441-450.	6.2	110
147	Mo/HMCM-22 Catalysts for Methane Dehydroaromatization:  A Multinuclear MAS NMR Study. Journal of Physical Chemistry B, 2001, 105, 1786-1793.	2.6	109
148	Pentacoordinated Al ³⁺ â€Stabilized Active Pd Structures on Al ₂ O ₃ â€Coated Palladium Catalysts for Methane Combustion. Angewandte Chemie - International Edition, 2019, 58, 12043-12048.	13.8	109
149	Title is missing!. Catalysis Letters, 2000, 66, 155-160.	2.6	104
150	Remarkable Improvement on the Methane Aromatization Reaction:  A Highly Selective and Coking-Resistant Catalyst. Journal of Physical Chemistry B, 2002, 106, 8524-8530.	2.6	104
151	FeN nanoparticles confined in carbon nanotubes for CO hydrogenation. Energy and Environmental Science, 2011, 4, 4500.	30.8	104
152	One‣tep Scalable Fabrication of Grapheneâ€Integrated Micro‣upercapacitors with Remarkable Flexibility and Exceptional Performance Uniformity. Advanced Functional Materials, 2019, 29, 1902860.	14.9	104
153	A highâ€resolution solidâ€state NMR study on nanoâ€structured HZSMâ€5 zeolite. Catalysis Letters, 1999, 60, 89-94.	2.6	102
154	Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6â^´î´ via repeated redox manipulations for CO2 electrolysis. Nature Communications, 2021, 12, 5665.	12.8	102
155	Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction. Carbon, 2014, 75, 381-389.	10.3	101
156	Rational approach to guest confinement inside MOF cavities for low-temperature catalysis. Nature Communications, 2019, 10, 1340.	12.8	100
157	Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion. ACS Catalysis, 2019, 9, 960-966.	11.2	100
158	Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation. Nature Communications, 2012, 3, 1280.	12.8	97
159	Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation. Scientific Reports, 2014, 4, 4288.	3.3	97
160	Alkanes-assisted low temperature formation of highly ordered SBA-15 with large cylindrical mesopores. Chemical Communications, 2005, , 5343.	4.1	96
161	High Packing Density Unidirectional Arrays of Vertically Aligned Graphene with Enhanced Areal Capacitance for High-Power Micro-Supercapacitors. ACS Nano, 2017, 11, 4009-4016.	14.6	96
162	Freestanding Graphene by Thermal Splitting of Silicon Carbide Granules. Advanced Materials, 2010, 22, 2168-2171.	21.0	95

XINHE BAO

#	Article	IF	CITATIONS
163	Enhanced Nickel-Catalyzed Methanation Confined under Hexagonal Boron Nitride Shells. ACS Catalysis, 2016, 6, 6814-6822.	11.2	95
164	Highâ€Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OXâ€ZEO) Catalysis. Angewandte Chemie - International Edition, 2019, 58, 7400-7404.	13.8	95
165	Atomicâ€Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La _{0.4} Sr _{0.6} Co _{0.2} Fe _{0.7} Mo _{0.1} O _{3â^'<i>δwith Efficient CO₂ Electrolysis. Angewandte Chemie - International Edition, 2020, 59, 15968-15973.</i>}	> 13.8	94
166	Textural Manipulation of Mesoporous Materials for Hosting of Metallic Nanocatalysts. Chemistry - A European Journal, 2008, 14, 7478-7488.	3.3	93
167	Electrocatalytic reduction of carbon dioxide over reduced nanoporous zinc oxide. Electrochemistry Communications, 2016, 68, 67-70.	4.7	93
168	MAS NMR Studies on the Dealumination of Zeolite MCM-22. Journal of Physical Chemistry B, 2001, 105, 1770-1779.	2.6	92
169	Enhancing electrocatalytic CO2 reduction in solid oxide electrolysis cell with Ce0.9Mn0.1O2â^Î^ nanoparticles-modified LSCM-GDC cathode. Journal of Catalysis, 2018, 359, 8-16.	6.2	92
170	Supported bimetallic PdAu nanoparticles with superior electrocatalytic activity towards methanol oxidation. Journal of Materials Chemistry A, 2013, 1, 9157.	10.3	91
171	Two-Dimensional Mesoporous Carbon Doped with Fe–N Active Sites for Efficient Oxygen Reduction. ACS Catalysis, 2017, 7, 7638-7646.	11.2	90
172	All-solid-state planar integrated lithium ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51, 613-620.	16.0	88
173	A study of the acidity of SAPO-34 by solid-state NMR spectroscopy. Microporous and Mesoporous Materials, 2012, 158, 19-25.	4.4	87
174	Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion. Journal of Materials Chemistry A, 2018, 6, 21747-21784.	10.3	85
175	Interlayer Expansion of the Layered Zeolite Precursor RUB-39: A Universal Method To Synthesize Functionalized Microporous Silicates. Chemistry of Materials, 2011, 23, 2545-2554.	6.7	84
176	Enhanced reactivity of graphene wrinkles and their function as nanosized gas inlets for reactions under graphene. Physical Chemistry Chemical Physics, 2013, 15, 19042.	2.8	84
177	Catalytic conversion of syngas into C2 oxygenates over Rh-based catalysts—Effect of carbon supports. Catalysis Today, 2009, 147, 86-93.	4.4	83
178	The role of alumina in the supported Mo/HBeta–Al2O3 catalyst for olefin metathesis: A high-resolution solid-state NMR and electron microscopy study. Journal of Catalysis, 2007, 250, 55-66.	6.2	82
179	Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles. Applied Surface Science, 2009, 255, 7296-7301.	6.1	82
180	Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Materials, 2018, 13, 233-240.	18.0	82

#	Article	IF	CITATIONS
181	lonogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy and Environmental Science, 2020, 13, 821-829.	30.8	82
182	Surface-enhanced Raman scattering from surface and subsurface oxygen species at microscopically well-defined Ag surfaces. Physical Review Letters, 1994, 72, 1561-1564.	7.8	81
183	2D holey cobalt sulfide nanosheets derived from metal–organic frameworks for high-rate sodium ion batteries with superior cyclability. Journal of Materials Chemistry A, 2018, 6, 14324-14329.	10.3	81
184	The effect of water on the formation of strongly bound oxygen on silver surfaces. Catalysis Letters, 1995, 32, 171-183.	2.6	79
185	On the relation between catalytic performance and microstructure of polycrystalline silver in the partial oxidation of methanol. Catalysis Letters, 1995, 33, 305-319.	2.6	79
186	Different Mechanisms for the Formation of Acetaldehyde and Ethanol on the Rh–Based Catalysts. Journal of Catalysis, 2000, 196, 46-55.	6.2	79
187	Origin of charge transfer and enhanced electron–phonon coupling in single unit-cell FeSe films on SrTiO3. Nature Communications, 2017, 8, 214.	12.8	77
188	Pure CO ₂ electrolysis over an Ni/YSZ cathode in a solid oxide electrolysis cell. Journal of Materials Chemistry A, 2018, 6, 13661-13667.	10.3	77
189	Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. Journal of Catalysis, 2005, 234, 33-36.	6.2	76
190	Direct Observation of the Mesopores in ZSM-5 Zeolites with Hierarchical Porous Structures by Laser-Hyperpolarized ¹²⁹ Xe NMR. Journal of Physical Chemistry C, 2008, 112, 15375-15381.	3.1	74
191	Formation of identical-size graphene nanoclusters on Ru(0001). Chemical Communications, 2011, 47, 1470-1472.	4.1	74
192	FeN particles confined inside CNT for light olefin synthesis from syngas: Effects of Mn and K additives. Catalysis Today, 2012, 186, 121-127.	4.4	74
193	Rational synthesis of Beta zeolite with improved quality by decreasing crystallization temperature in organotemplate-free route. Microporous and Mesoporous Materials, 2013, 180, 123-129.	4.4	74
194	Variation of the morphology of silver surfaces by thermal and catalytic etching. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 865-872.	1.7	72
195	Electrochemical promotion of catalysis over Pd nanoparticles for CO ₂ reduction. Chemical Science, 2017, 8, 2569-2573.	7.4	72
196	Methane dehydroaromatization over Mo/HZSM-5 catalysts: The reactivity of MoCx species formed from MoOx associated and non-associated with Brönsted acid sites. Applied Catalysis A: General, 2005, 295, 79-88.	4.3	71
197	Transformation of Biomass into Porous Graphitic Carbon Nanostructures by Microwave Irradiation. Journal of Physical Chemistry C, 2008, 112, 17596-17602.	3.1	71
198	An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Research, 2012, 5, 352-360.	10.4	71

#	Article	IF	CITATIONS
199	Bimetallic Zn and Hf on Silica Catalysts for the Conversion of Ethanol to 1,3-Butadiene. ACS Catalysis, 2015, 5, 3393-3397.	11.2	71
200	Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 2017, 5, 9076-9080.	10.3	71
201	All-solid-state high-energy planar hybrid micro-supercapacitors based on 2D VN nanosheets and Co(OH)2 nanoflowers. Npj 2D Materials and Applications, 2018, 2, .	7.9	71
202	A Reconstructed Cu ₂ P ₂ O ₇ Catalyst for Selective CO ₂ Electroreduction to Multicarbon Products. Angewandte Chemie - International Edition, 2022, 61, e202114238.	13.8	71
203	Highly active mesostructured silica hosted silver catalysts for CO oxidation using the one-pot synthesis approach. Chemical Communications, 2008, , 2677.	4.1	70
204	Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Physical Chemistry Chemical Physics, 2011, 13, 16655.	2.8	70
205	Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction. Catalysis Letters, 2007, 116, 63-69.	2.6	69
206	Reversible Structural Modulation of Fe–Pt Bimetallic Surfaces and Its Effect on Reactivity. ChemPhysChem, 2009, 10, 1013-1016.	2.1	68
207	Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy. Chemical Science, 2015, 6, 3262-3267.	7.4	68
208	High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe ₂ . Angewandte Chemie - International Edition, 2017, 56, 14113-14118.	13.8	68
209	Methane dehydroaromatization over Mo/HZSM-5 catalysts in the absence of oxygen: effects of silanation in HZSM-5 zeolite. Catalysis Today, 2004, 93-95, 65-73.	4.4	67
210	Syngas Segregation Induced by Confinement in Carbon Nanotubes: A Combined First-Principles and Monte Carlo Study. Journal of Physical Chemistry C, 2009, 113, 21687-21692.	3.1	67
211	New insights into reaction mechanisms of ethanol steam reforming on Co–ZrO2. Applied Catalysis B: Environmental, 2015, 162, 141-148.	20.2	67
212	Low charge overpotential of lithium-oxygen batteries with metallic Co encapsulated in single-layer graphene shell as the catalyst. Nano Energy, 2016, 30, 877-884.	16.0	67
213	Confined microenvironment for catalysis control. Nature Catalysis, 2019, 2, 834-836.	34.4	67
214	Monolayer MoS ₂ Growth on Au Foils and Onâ€ S ite Domain Boundary Imaging. Advanced Functional Materials, 2015, 25, 842-849.	14.9	66
215	Dramatically enhanced thermoelectric performance of MoS ₂ by introducing MoO ₂ nanoinclusions. Journal of Materials Chemistry A, 2017, 5, 2004-2011.	10.3	66
216	Deactivation mechanism and regeneration of carbon nanocomposite catalyst for acetylene hydrochlorination. Applied Catalysis B: Environmental, 2017, 210, 116-120.	20.2	65

#	Article	IF	CITATIONS
217	Thermal Decomposition of Silver Oxide Monitored by Raman Spectroscopy: From AgO Units to Oxygen Atoms Chemisorbed on the Silver Surface. Angewandte Chemie International Edition in English, 1994, 33, 85-86.	4.4	64
218	Facile encapsulation of nanosized SnO2 particles in carbon nanotubes as an efficient anode of Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9527.	10.3	64
219	Insights into the Topotactic Conversion Process from Layered Silicate RUB-36 to FER-type Zeolite by Layer Reassembly. Chemistry of Materials, 2013, 25, 840-847.	6.7	64
220	Nanocarbons and their hybrids as catalysts for non-aqueous lithium–oxygen batteries. Journal of Energy Chemistry, 2016, 25, 957-966.	12.9	64
221	Rare-earth ion exchanged Cu-SSZ-13 zeolite from organotemplate-free synthesis with enhanced hydrothermal stability in NH ₃ -SCR of NO _x . Catalysis Science and Technology, 2019, 9, 241-251.	4.1	64
222	Growth and Characterization of Two-Dimensional FeO Nanoislands Supported on Pt(111). Journal of Physical Chemistry C, 2010, 114, 17069-17079.	3.1	63
223	Investigation of Aluminum Site Changes of Dehydrated Zeolite H-Beta during a Rehydration Process by High-Field Solid-State NMR. Journal of Physical Chemistry C, 2015, 119, 1410-1417.	3.1	63
224	In Situ1H MAS NMR Spectroscopic Observation of Proton Species on a Mo-Modified HZSM-5 Zeolite Catalyst for the Dehydroaromatization of Methane. Angewandte Chemie - International Edition, 2000, 39, 2928-2931.	13.8	62
225	Investigation on the catalytic roles of silver species in the selective catalytic reduction of NO with methane. Applied Catalysis B: Environmental, 2004, 51, 171-181.	20.2	62
226	Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems. Catalysis Today, 2004, 93-95, 857-861.	4.4	62
227	Rh-Decorated Cu Alloy Catalyst for Improved C ₂ Oxygenate Formation from Syngas. Journal of Physical Chemistry C, 2011, 115, 18247-18256.	3.1	62
228	A Highly Active "NiO-on-Au―Surface Architecture for CO Oxidation. ACS Catalysis, 2013, 3, 1810-1818.	11.2	62
229	Transition metal-nitrogen sites for electrochemical carbon dioxide reduction reaction. Chinese Journal of Catalysis, 2019, 40, 23-37.	14.0	62
230	Room-temperature electrochemical water–gas shift reaction for high purity hydrogen production. Nature Communications, 2019, 10, 86.	12.8	62
231	Layeredâ€Carbon‣tabilized Iron Oxide Nanostructures as Oxidation Catalysts. Angewandte Chemie - International Edition, 2011, 50, 10236-10240.	13.8	61
232	Tailoring the Oxidation Activity of Pt Nanoclusters via Encapsulation. ACS Catalysis, 2015, 5, 1381-1385.	11.2	61
233	Two-dimensional materials confining single atoms for catalysis. Chinese Journal of Catalysis, 2017, 38, 1443-1453.	14.0	61
234	Boosting CO ₂ electroreduction over layered zeolitic imidazolate frameworks decorated with Ag ₂ 0 nanoparticles. Journal of Materials Chemistry A, 2017, 5, 19371-19377.	10.3	61

XINHE BAO

#	Article	IF	CITATIONS
235	Highly active Pt–Fe bicomponent catalysts for CO oxidation in the presence and absence of H ₂ . Energy and Environmental Science, 2012, 5, 6313-6320.	30.8	60
236	Characterization of Rh-based catalysts with EPR, TPR, IR and XPS. Journal of Molecular Catalysis A, 1999, 149, 51-61.	4.8	59
237	Effect of aluminum on the formation of zeolite MCM-22 and kenyaite. Microporous and Mesoporous Materials, 2001, 42, 307-316.	4.4	59
238	Theoretical Study of the Role of a Metal–Cation Ensemble at the Oxide–Metal Boundary on CO Oxidation. Journal of Physical Chemistry C, 2012, 116, 7491-7498.	3.1	59
239	Interlayer Expansion of the Hydrous Layer Silicate RUB-36 to a Functionalized, Microporous Framework Silicate: Crystal Structure Analysis and Physical and Chemical Characterization. Chemistry of Materials, 2012, 24, 1536-1545.	6.7	59
240	Catalytic applications of OSDA-free Beta zeolite. Journal of Catalysis, 2013, 308, 73-81.	6.2	59
241	Sorption-enhanced synthetic natural gas (SNG) production from syngas: A novel process combining CO methanation, water-gas shift, and CO2 capture. Applied Catalysis B: Environmental, 2014, 144, 223-232.	20.2	59
242	A new catalyst platform: zeolite Beta from template-free synthesis. Catalysis Science and Technology, 2013, 3, 2580.	4.1	58
243	Tuning the redox activity of encapsulated metal clusters via the metallic and semiconducting character of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14861-14866.	7.1	58
244	High-performance hydrogen evolution electrocatalysis by layer-controlled MoS ₂ nanosheets. RSC Advances, 2014, 4, 34733-34738.	3.6	58
245	Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion. Journal of Energy Chemistry, 2019, 35, 44-48.	12.9	58
246	Enhanced Catalytic Activity of Subâ€nanometer Titania Clusters Confined inside Doubleâ€Wall Carbon Nanotubes. ChemSusChem, 2011, 4, 975-980.	6.8	57
247	Graphene-supported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. Faraday Discussions, 2014, 176, 135-151.	3.2	57
248	Temperatureâ€Dependent CO ₂ Electroreduction over Feâ€N and Niâ€N Singleâ€Atom Catal Angewandte Chemie - International Edition, 2021, 60, 26582-26586.	ysts. 13.8	57
249	A high coking-resistance catalyst for methane aromatization. Chemical Communications, 2001, , 2048-2049.	4.1	56
250	Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS. Applied Catalysis A: General, 2001, 214, 69-76.	4.3	56
251	Interlayerâ€Expanded Microporous Titanosilicate Catalysts with Functionalized Hydroxyl Groups. ChemCatChem, 2011, 3, 1442-1446.	3.7	56
252	Role of 12-Ring Channels of Mordenite in DME Carbonylation Investigated by Solid-State NMR. Journal of Physical Chemistry C, 2016, 120, 22526-22531.	3.1	56

#	Article	IF	CITATIONS
253	Oscillation of Surface Structure and Reactivity of PtNi Bimetallic Catalysts with Redox Treatments at Variable Temperatures. Journal of Physical Chemistry C, 2011, 115, 20590-20595.	3.1	55
254	All-solid-state high-energy planar asymmetric supercapacitors based on all-in-one monolithic film using boron nitride nanosheets as separator. Energy Storage Materials, 2018, 10, 24-31.	18.0	55
255	Enhanced hydrogen evolution reaction over molybdenum carbide nanoparticles confined inside single-walled carbon nanotubes. Journal of Energy Chemistry, 2019, 28, 123-127.	12.9	55
256	Oxidation of amorphous Ni–Zr alloys studied by XPS, UPS, ISS and XRD. Applied Surface Science, 1998, 134, 31-38.	6.1	54
257	Perfluorotributylamine as a probe molecule for distinguishing internal and external acidic sites in zeolites by high-resolution 1H MAS NMR spectroscopy. Chemical Communications, 1999, , 1091-1092.	4.1	54
258	In Situ Magnetic Resonance Investigation of Styrene Oxidation over TS-1 Zeolites. Angewandte Chemie - International Edition, 2004, 43, 6377-6381.	13.8	54
259	Effect of acidity in TS-1 zeolites on product distribution of the styrene oxidation reaction. Applied Catalysis A: General, 2004, 258, 1-6.	4.3	54
260	Synthesis, Characterization and Catalytic Performance of Ti-Containing Mesoporous Molecular Sieves Assembled from Titanosilicate Precursors. Chemistry of Materials, 2007, 19, 1664-1670.	6.7	54
261	New Insights into the Role of Amines in the Synthesis of Molecular Sieves in Ionic Liquids. Chemistry - A European Journal, 2009, 15, 5348-5354.	3.3	54
262	Conversion of Methanol to Hydrocarbons over Phosphorus-modified ZSM-5/ZSM-11 Intergrowth Zeolites. Catalysis Letters, 2010, 134, 124-130.	2.6	54
263	Architecture of PtCo Bimetallic Catalysts for Catalytic CO Oxidation. ChemCatChem, 2012, 4, 1645-1652.	3.7	54
264	pH effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles. Electrochemistry Communications, 2015, 55, 1-5.	4.7	54
265	Catalytically Active Boron Nitride in Acetylene Hydrochlorination. ACS Catalysis, 2017, 7, 8572-8577.	11.2	54
266	Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na ₃ V ₂ (PO ₄) ₃ for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 4209-4218.	10.3	54
267	Enhancing chemical reactions in a confined hydrophobic environment: an NMR study of benzene hydroxylation in carbon nanotubes. Chemical Science, 2013, 4, 1075.	7.4	53
268	Catalysis under shell: Improved CO oxidation reaction confined in Pt@h-BN core–shell nanoreactors. Nano Research, 2017, 10, 1403-1412.	10.4	53
269	Size-dependence of carbon nanotube confinement in catalysis. Chemical Science, 2017, 8, 278-283.	7.4	53
270	Selective Synthesis of Benzene, Toluene, and Xylenes from Syngas. ACS Catalysis, 2020, 10, 7389-7397.	11.2	53

#	Article	IF	CITATIONS
271	Synthesis of Carbon Nanotube Bundles with Mesoporous Structure by a Self-Assembly Solvothermal Route. Chemistry of Materials, 2003, 15, 1470-1473.	6.7	52
272	Large-pore mesoporous SBA-15 silica particles with submicrometer size as stationary phases for high-speed CEC separation. Electrophoresis, 2006, 27, 742-748.	2.4	52
273	Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite. Journal of Materials Chemistry A, 2019, 7, 4420-4425.	10.3	52
274	Surface Chemistry of CO on Ru(0001) under the Confinement of Graphene Cover. Journal of Physical Chemistry C, 2014, 118, 12391-12398.	3.1	51
275	Investigation of the Structure and Active Sites of TiO ₂ Nanorod Supported VO _{<i>x</i>} Catalysts by High-Field and Fast-Spinning ⁵¹ V MAS NMR. ACS Catalysis, 2015, 5, 3945-3952.	11.2	51
276	Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nature Communications, 2017, 8, 14459.	12.8	51
277	Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 39-44.	5.9	51
278	Enhanced ethylene selectivity and stability of Mo/ZSM5 upon modification with phosphorus in ethane dehydrogenation. Journal of Catalysis, 2018, 361, 94-104.	6.2	51
279	Oxidative coupling of methane on silver catalysts. Catalysis Letters, 1995, 32, 185-194.	2.6	50
280	First Principle Study of Ethanol Adsorption and Formation of Hydrogen Bond on Rh(111) Surface. Journal of Physical Chemistry C, 2007, 111, 7403-7410.	3.1	50
281	Acidity and defect sites in titanium silicalite catalyst. Applied Catalysis A: General, 2008, 337, 58-65.	4.3	50
282	Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001). Physical Chemistry Chemical Physics, 2010, 12, 5053.	2.8	50
283	The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts. Applied Catalysis A: General, 2002, 236, 263-280.	4.3	49
284	CO selective oxidation in H2-rich gas over Ag nanoparticles—effect of oxygen treatment temperature on the activity of silver particles mechanically mixed with SiO2. Catalysis Today, 2004, 93-95, 247-255.	4.4	48
285	Enhanced In situ Continuous-Flow MAS NMR for Reaction Kinetics in the Nanocages. Journal of the American Chemical Society, 2009, 131, 13722-13727.	13.7	48
286	Reversible structural transformation of FeOx nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis. Physical Chemistry Chemical Physics, 2013, 15, 14708.	2.8	48
287	Creation of BrÃ,nsted acid sites on Sn-based solid catalysts for the conversion of biomass. Journal of Materials Chemistry A, 2014, 2, 3725.	10.3	48
288	An Investigation of the Roles of Surface Aluminum and Acid Sites in the Zeolite MCM-22. Chemistry - A European Journal, 2002, 8, 162-170.	3.3	47

#	Article	IF	CITATIONS
289	A DFT Study on Isomorphously Substituted MCM-22 Zeolite. Journal of Physical Chemistry A, 2004, 108, 6730-6734.	2.5	47
290	Size-Dependent Surface Reactions of Ag Nanoparticles Supported on Highly Oriented Pyrolytic Graphite. Langmuir, 2008, 24, 10874-10878.	3.5	47
291	Dynamic Characterization of Graphene Growth and Etching by Oxygen on Ru(0001) by Photoemission Electron Microscopy. Journal of Physical Chemistry C, 2009, 113, 20365-20370.	3.1	47
292	Novel tartrate-derived guanidine-catalyzed highly enantio- and diastereoselective Michael addition of 3-substituted oxindoles to nitroolefins. Chemical Communications, 2014, 50, 5760.	4.1	47
293	Direct observation of DME carbonylation in the different channels of H-MOR zeolite by continuous-flow solid-state NMR spectroscopy. Chemical Communications, 2015, 51, 16868-16870.	4.1	47
294	High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts. Journal of Catalysis, 2016, 336, 85-93.	6.2	47
295	Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc–air battery. Journal of Energy Chemistry, 2017, 26, 1181-1186.	12.9	47
296	Role of SAPO-18 Acidity in Direct Syngas Conversion to Light Olefins. ACS Catalysis, 2020, 10, 12370-12375.	11.2	47
297	Epoxidation of Propylene on NaCl-Modified VCe1-x Cux Oxide Catalysts with Direct Molecular Oxygen as the Oxidant. Journal of Catalysis, 2002, 211, 552-555.	6.2	46
298	Identification of Mo active species for methane dehydro-aromatization over Mo/HZSM-5 catalysts in the absence of oxygen: 1H MAS NMR and EPR investigations. Journal of Molecular Catalysis A, 2006, 244, 229-236.	4.8	46
299	Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. Journal of Chemical Physics, 2008, 128, 194707.	3.0	46
300	π–π Interaction intercalation of layered carbon materials with metallocene. Dalton Transactions, 2011, 40, 4542.	3.3	46
301	A comparative study of intercalation mechanism at graphene/Ru(0001) interface. Surface Science, 2013, 617, 81-86.	1.9	46
302	High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer. Nano Energy, 2016, 30, 801-809.	16.0	46
303	Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnology Letters, 2004, 26, 885-890.	2.2	45
304	Nature of Interface Confinement Effect in Oxide/Metal Catalysts. Journal of Physical Chemistry C, 2015, 119, 27556-27561.	3.1	45
305	Fundamental insights into interfacial catalysis. Chemical Society Reviews, 2017, 46, 1770-1771.	38.1	45
306	On the selectively catalytic reduction of NOx with methane over Ag-ZSM-5 catalysts. Applied Catalysis B: Environmental, 2002, 36, 173-182.	20.2	44

#	Article	IF	CITATIONS
307	Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Research, 2014, 7, 1519-1527.	10.4	44
308	Diffusion of Water Inside Carbon Nanotubes Studied by Pulsed Field Gradient NMR Spectroscopy. Langmuir, 2014, 30, 8036-8045.	3.5	44
309	Active Phase of FeOx/Pt Catalysts in Low-Temperature CO Oxidation and Preferential Oxidation of CO Reaction. Journal of Physical Chemistry C, 2017, 121, 10398-10405.	3.1	44
310	Role of the carrier gas flow rate in monolayer MoS2 growth by modified chemical vapor deposition. Nano Research, 2017, 10, 643-651.	10.4	44
311	Realizing p-Type MoS ₂ with Enhanced Thermoelectric Performance by Embedding VMo ₂ S ₄ Nanoinclusions. Journal of Physical Chemistry B, 2018, 122, 713-720.	2.6	44
312	Enhanced Methane Conversion to Olefins and Aromatics by H-Donor Molecules under Nonoxidative Condition. ACS Catalysis, 2019, 9, 9045-9050.	11.2	44
313	Electrocatalytic properties of Cu–Zr amorphous alloy towards the electrochemical hydrogenation of nitrobenzene. Journal of Alloys and Compounds, 2003, 354, 248-258.	5.5	43
314	Ferrous Centers Confined on Core–Shell Nanostructures for Low-Temperature CO Oxidation. Journal of the American Chemical Society, 2012, 134, 12350-12353.	13.7	43
315	Coadsorption of nitric oxide and oxygen on the Ag(110) surface. Surface Science, 1999, 425, 224-232.	1.9	42
316	Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chemical Communications, 2008, , 2480.	4.1	42
317	Olefin Metathesis over Heterogeneous Catalysts:  Interfacial Interaction between Mo Species and a Hβâ^'Al ₂ O ₃ Composite Support. Journal of Physical Chemistry C, 2008, 112, 5955-5960.	3.1	42
318	Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride. Journal of Energy Chemistry, 2014, 23, 131-135.	12.9	42
319	Creating a Nanospace under an h-BN Cover for Adlayer Growth on Nickel(111). ACS Nano, 2015, 9, 11589-11598.	14.6	42
320	Electrochemical CO ₂ reduction on graphdiyne: a DFT study. Green Chemistry, 2021, 23, 1212-1219.	9.0	42
321	In situ identification of the metallic state of Ag nanoclusters in oxidative dispersion. Nature Communications, 2021, 12, 1406.	12.8	42
322	Study on the External Surface Acidity of MCM-22 Zeolite:  Theoretical Calculation and 31P MAS NMR. Journal of Physical Chemistry B, 2004, 108, 1386-1391.	2.6	41
323	Simultaneous N-intercalation and N-doping of epitaxial graphene on 6H-SiC(0001) through thermal reactions with ammonia. Nano Research, 2013, 6, 399-408.	10.4	41
324	Enhancement of low-temperature activity over Cu-exchanged zeolite beta from organotemplate-free synthesis for the selective catalytic reduction of NOx with NH3 in exhaust gas streams. Microporous and Mesoporous Materials, 2014, 200, 304-310.	4.4	41

#	Article	IF	CITATIONS
325	Effects of Proximity-Dependent Metal Migration on Bifunctional Composites Catalyzed Syngas to Olefins. ACS Catalysis, 2021, 11, 9729-9737.	11.2	41
326	NMR Study on the Acidity of TS-1 Zeolite. Catalysis Letters, 2002, 83, 87-91.	2.6	40
327	Simultaneous enhancement in the power factor and thermoelectric performance of copper sulfide by In ₂ S ₃ doping. Journal of Materials Chemistry A, 2016, 4, 12624-12629.	10.3	40
328	Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts. Catalysis Communications, 2019, 129, 105711.	3.3	40
329	Investigation of the regio- and stereoselectivity of Diels–Alder reactions by newly developed ABEEM σπ model on the basis of local HSAB principle and maximum hardness principle. Chemical Physics Letters, 2002, 357, 59-64.	2.6	39
330	Characterization of the acid sites in dealuminated nanosized HZSM-5 zeolite with the probe molecule trimethylphosphine. Journal of Molecular Catalysis A, 2003, 194, 107-113.	4.8	39
331	Solid-state MAS NMR detection of the oxidation center in TS-1 zeolite by in situ probe reaction. Journal of Catalysis, 2004, 221, 670-673.	6.2	39
332	Effect of Ag+Cations on Nonoxidative Activation of Methane to C2-Hydrocarbons. Journal of Physical Chemistry B, 2004, 108, 17866-17871.	2.6	39
333	Enhancement on the hydrothermal stability of ZSM-5 zeolites by the cooperation effect of exchanged lanthanum and phosphoric species. Journal of Molecular Structure, 2005, 737, 271-276.	3.6	39
334	Density functional theory calculations on various M/ZSM-5 zeolites: Interaction with probe molecule H2O and relative hydrothermal stability predicted by binding energies. Journal of Molecular Catalysis A, 2005, 237, 36-44.	4.8	39
335	Modulation of Surface Chemistry of CO on Ni(111) by Surface Graphene and Carbidic Carbon. Journal of Physical Chemistry C, 2015, 119, 13590-13597.	3.1	39
336	Improvement of catalytic activity over Cu–Fe modified Al-rich Beta catalyst for the selective catalytic reduction of NO with NH3. Microporous and Mesoporous Materials, 2016, 236, 211-217.	4.4	39
337	Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells. Nano Energy, 2020, 71, 104598.	16.0	39
338	Titanium species in titanium silicalite TS-1 prepared by hydrothermal method. Materials Chemistry and Physics, 2001, 71, 195-201.	4.0	38
339	Methane dehydroaromatization with periodic CH4-H2 switch: A promising process for aromatics and hydrogen. Journal of Energy Chemistry, 2015, 24, 257-263.	12.9	38
340	Synergetic optimization of electronic and thermal transport for high-performance thermoelectric GeSe–AgSbTe ₂ alloy. Journal of Materials Chemistry A, 2018, 6, 8215-8220.	10.3	38
341	Fast detection and structural identification of carbocations on zeolites by dynamic nuclear polarization enhanced solid-state NMR. Chemical Science, 2018, 9, 8184-8193.	7.4	38
342	Electrochemical CO ₂ Reduction Reaction on 3d Transition Metal Single-Atom Catalysts Supported on Graphdiyne: A DFT Study. Journal of Physical Chemistry C, 2021, 125, 26013-26020.	3.1	38

#	Article	IF	CITATIONS
343	Fabrication of metal nanoclusters on graphene grown on Ru(0001). Science Bulletin, 2009, 54, 2446-2450.	1.7	37
344	Insights into the Deactivation Mechanism of Heterogeneous Mo/Hβ-Al ₂ O ₃ Catalysts for Olefin Metathesis. Journal of Physical Chemistry C, 2009, 113, 8228-8233.	3.1	37
345	Facile oxygen intercalation between full layer graphene and Ru(0001) under ambient conditions. Surface Science, 2015, 634, 37-43.	1.9	37
346	Stability of BN/metal interfaces in gaseous atmosphere. Nano Research, 2015, 8, 227-237.	10.4	37
347	Confinement effect of carbon nanotubes on the product distribution of selective hydrogenation of cinnamaldehyde. Chinese Journal of Catalysis, 2017, 38, 1315-1321.	14.0	37
348	Distance Synergy of MoS ₂ â€Confined Rhodium Atoms for Highly Efficient Hydrogen Evolution. Angewandte Chemie, 2020, 132, 10588-10593.	2.0	37
349	Electron penetration triggering interface activity of Pt-graphene for CO oxidation at room temperature. Nature Communications, 2021, 12, 5814.	12.8	37
350	On the correlation between microstructural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the selective catalytic reduction of NOx by methane. Journal of Molecular Catalysis A, 2005, 235, 35-43.	4.8	36
351	A high-resolution MAS NMR study on the potential catalysts Mo/HBeta for olefin metathesis: The interaction of Mo species with HBeta zeolite. Journal of Molecular Catalysis A, 2006, 250, 94-99.	4.8	36
352	One-pot Encapsulation of Pt Nanoparticles into the Mesochannels of SBA-15 and their Catalytic Dehydrogenation of Methylcyclohexane. Catalysis Letters, 2007, 119, 159-164.	2.6	36
353	CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study. Catalysis Letters, 2005, 101, 21-26.	2.6	35
354	Graphitic carbon nanostructures via a facile microwave-induced solid-state process. Chemical Communications, 2008, , 2765.	4.1	35
355	Tailoring the Growth of Graphene on Ru(0001) via Engineering of the Substrate Surface. Journal of Physical Chemistry C, 2012, 116, 2988-2993.	3.1	35
356	A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye‧ensitized Solar Cells. Angewandte Chemie, 2016, 128, 6820-6824.	2.0	35
357	Development of a post-synthetic method for tuning the Al content of OSDA-free Beta as a catalyst for conversion of methanol to olefins. Catalysis Science and Technology, 2016, 6, 713-721.	4.1	35
358	Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines. Reaction Chemistry and Engineering, 2019, 4, 975-985.	3.7	35
359	Double-layer hybrid chainmail catalyst for high-performance hydrogen evolution. Nano Energy, 2020, 72, 104700.	16.0	35
360	The Coalescence Behavior of Two-Dimensional Materials Revealed by Multiscale <i>In Situ</i> Imaging during Chemical Vapor Deposition Growth. ACS Nano, 2020, 14, 1902-1918.	14.6	35

#	Article	IF	CITATIONS
361	Oxidative Strong Metal–Support Interactions between Metals and Inert Boron Nitride. Journal of Physical Chemistry Letters, 2021, 12, 4187-4194.	4.6	35
362	The stability of nanosized HZSM-5 zeolite: a high-resolution solid-state NMR study. Microporous and Mesoporous Materials, 2001, 50, 13-23.	4.4	34
363	Phase evolution in the alkane–P123–water–TEOS quadru-component system: a feasible route to different complex mesostructured materials. Journal of Materials Chemistry, 2006, 16, 1507-1510.	6.7	34
364	Preparation and characterization of atomically flat and ordered silica films on a Pd(100) surface. Thin Solid Films, 2008, 516, 3741-3746.	1.8	34
365	Multinuclear Solid-State NMR Studies on the Formation Mechanism of Aluminophosphate Molecular Sieves in Ionic Liquids. Journal of Physical Chemistry C, 2013, 117, 5848-5854.	3.1	34
366	Hydrogen Intercalation of Graphene and Boron Nitride Monolayers Grown on Pt(111). Topics in Catalysis, 2016, 59, 543-549.	2.8	34
367	Allâ€Solidâ€State Planar Sodiumâ€Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways. Advanced Science, 2019, 6, 1902147.	11.2	34
368	Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO ₂ nanoparticles. Journal of Materials Chemistry A, 2019, 7, 14328-14336.	10.3	34
369	CO and H ₂ Activation over g-ZnO Layers and w-ZnO(0001). ACS Catalysis, 2019, 9, 1373-1382.	11.2	34
370	Câ^'C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSMâ€5 Zeolite. Angewandte Chemie - International Edition, 2020, 59, 6529-6534.	13.8	34
371	Title is missing!. Catalysis Letters, 2000, 66, 161-167.	2.6	33
372	Post-steam-treatment of Mo/HZSM-5 Catalysts:Â An Alternative and Effective Approach for Enhancing Their Catalytic Performances of Methane Dehydroaromatization. Journal of Physical Chemistry B, 2003, 107, 12964-12972.	2.6	33
373	In Situ Assembly of Zeolitic Building Blocks into High-Order Structures. Angewandte Chemie - International Edition, 2004, 43, 3452-3456.	13.8	33
374	The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization. Physical Chemistry Chemical Physics, 2005, 7, 3102.	2.8	33
375	Synthesis, characterization, and catalytic properties of MWW zeolite with variable Si/Al ratios. Microporous and Mesoporous Materials, 2006, 94, 304-312.	4.4	33
376	A joint experimental–theoretical study on trimethylphosphine adsorption on the Lewis acidic sites present in TS-1 zeolite. Journal of Molecular Structure, 2008, 882, 24-29.	3.6	33
377	Synthesis and Characterization of Gibbsite Nanostructures. Journal of Physical Chemistry C, 2008, 112, 4124-4128.	3.1	33
378	Structure evolution of Pt–3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: a first-principles study. Catalysis Today, 2011, 165, 89-95.	4.4	33

#	Article	IF	CITATIONS
379	Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie - International Edition, 2019, 58, 4617-4621.	13.8	33
380	Solid state 13C NMR studies of methane dehydroaromatization reaction on Mo/HZSM-5 and W/HZSM-5 catalysts. Chemical Communications, 2002, , 3046-3047.	4.1	32
381	Towards Guest–Zeolite Interactions: An NMR Spectroscopic Approach. Chemistry - A European Journal, 2002, 8, 4557-4561.	3.3	32
382	On configuration of exchanged La3+ on ZSM-5: A theoretical approach to the improvement in hydrothermal stability of La-modified ZSM-5 zeolite. Journal of Chemical Physics, 2003, 119, 9765-9770.	3.0	32
383	Probing the Porosity of Cocrystallized MCM-49/ZSM-35 Zeolites by Hyperpolarized ¹²⁹ Xe NMR. Journal of Physical Chemistry B, 2008, 112, 1226-1231.	2.6	32
384	Effect of metal deposition sequence in carbon-supported Pd–Pt catalysts on activity towards CO2 electroreduction to formate. Electrochemistry Communications, 2017, 76, 1-5.	4.7	32
385	Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Research, 2018, 11, 3490-3498.	10.4	32
386	An MAS NMR Study on the Mo-modified Phosphoric Rare Earth (HZRP-1) Penta-Sil Zeolite Catalyst. Journal of Physical Chemistry B, 2000, 104, 8245-8249.	2.6	31
387	Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins. Chinese Journal of Catalysis, 2015, 36, 1631-1637.	14.0	31
388	Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Research, 2018, 11, 2821-2835.	10.4	31
389	Interfacial Enhancement by γâ€Al ₂ O ₃ of Electrochemical Oxidative Dehydrogenation of Ethane to Ethylene in Solid Oxide Electrolysis Cells. Angewandte Chemie - International Edition, 2019, 58, 16043-16046.	13.8	31
390	Controlled growth of uniform two-dimensional ZnO overlayers on Au(111) and surface hydroxylation. Nano Research, 2019, 12, 2348-2354.	10.4	31
391	Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nature Communications, 2020, 11, 2312.	12.8	31
392	Studies on superoxide O2â^' species on the interaction of TS-1 zeolite with H2O2. Journal of Molecular Catalysis A, 2000, 157, 265-268.	4.8	30
393	Low-temperature selective oxidation of CO in H2-rich gases over Ag/SiO2 catalysts. Journal of Molecular Catalysis A, 2005, 239, 22-31.	4.8	30
394	In- and Out-Dependent Interactions of Iron with Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 16461-16466.	3.1	30
395	Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 1174-1180.	12.9	30
396	Interface-Confined FeO _{<i>x</i>} Adlayers Induced by Metal Support Interaction in Pt/FeO _{<i>x</i>} Catalysts. Journal of Physical Chemistry B, 2018, 122, 984-990.	2.6	30

#	Article	IF	CITATIONS
397	Direct Synthesis of Aluminosilicate IWR Zeolite from a Strong Interaction between Zeolite Framework and Organic Template. Journal of the American Chemical Society, 2019, 141, 18318-18324.	13.7	30
398	Studies of the Active Sites for Methane Dehydroaromatization Using Ultrahigh-Field Solid-State 95Mo NMR Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 2936-2942.	3.1	29
399	Structured zeolites catalysts with hierarchical channel structure. Chemical Communications, 2010, 46, 1733.	4.1	29
400	Catalytic Reaction Processes Revealed by Scanning Probe Microscopy. Accounts of Chemical Research, 2015, 48, 1524-1531.	15.6	29
401	Fe-doped Beta zeolite from organotemplate-free synthesis for NH ₃ -SCR of NO _x . Catalysis Science and Technology, 2016, 6, 6581-6592.	4.1	29
402	Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping. Journal of Materials Chemistry A, 2016, 4, 10159-10165.	10.3	29
403	High-Field One-Dimensional and Two-Dimensional ²⁷ Al Magic-Angle Spinning Nuclear Magnetic Resonance Study of Î, Î [.] -, and γ-Al ₂ O ₃ Dominated Aluminum Oxides: Toward Understanding the Al Sites in γ-Al ₂ O ₃ . ACS Omega, 2021, 6, 4090-4099.	3.5	29
404	Modulating the methanation activity of Ni by the crystal phase of TiO ₂ . Catalysis Science and Technology, 2017, 7, 2813-2818.	4.1	29
405	The effect of tungsten additive on the surface characteristics of amorphous Ni–P alloy. Applied Surface Science, 1999, 148, 241-247.	6.1	28
406	A Novel Method To Synthesize Amorphous Silicaâ^'Alumina Materials with Mesoporous Distribution without Using Templates and Pore-Regulating Agents. Chemistry of Materials, 2002, 14, 122-129.	6.7	28
407	Study with density functional theory method on methane C–H bond activation on the MoO2/HZSM-5 active center. Chemical Physics Letters, 2003, 373, 46-51.	2.6	28
408	On the Nature of Reaction-Controlled Phase Transfer Catalysts for Epoxidation of Olefin: A ³¹ P NMR Investigation. Catalysis Letters, 2004, 93, 41-46.	2.6	28
409	Hydrogen Treatment-Induced Surface Reconstruction:  Formation of Superoxide Species on Activated Carbon over Ag/Activated Carbon Catalysts for Selective Oxidation of CO in H2-Rich Gases. Journal of Physical Chemistry C, 2007, 111, 2229-2234.	3.1	28
410	Emulsion-assisted synthesis of monodisperse binary metal nanoparticles. Chemical Communications, 2010, 46, 1344.	4.1	28
411	A Quantitative Electron Tomography Study of Ruthenium Particles on the Interior and Exterior Surfaces of Carbon Nanotubes. ChemSusChem, 2011, 4, 957-963.	6.8	28
412	The activity and stability of PdCl2/C-N catalyst for acetylene hydrochlorination. Science China Chemistry, 2018, 61, 444-448.	8.2	28
413	CO-tolerant PtRu@h-BN/C core–shell electrocatalysts for proton exchange membrane fuel cells. Applied Surface Science, 2018, 450, 244-250.	6.1	28
414	Simplified fabrication of high areal capacitance all-solid-state micro-supercapacitors based on graphene and MnO2 nanosheets. Chinese Chemical Letters, 2018, 29, 582-586.	9.0	28

#	Article	IF	CITATIONS
415	The synergetic effect of h-BN shells and subsurface B in CoB _x @h-BN nanocatalysts for enhanced oxygen evolution reactions. Journal of Materials Chemistry A, 2018, 6, 10644-10648.	10.3	28
416	Enhanced performance of methane dehydro-aromatization on Mo-based HZSM-5 zeolite pretreated by NH4F. Catalysis Communications, 2007, 8, 1567-1572.	3.3	27
417	Structure, Activity, and Stability of Triphenyl Phosphine-Modified Rh/SBA-15 Catalyst for Hydroformylation of Propene: A High-Resolution Solid-State NMR Study. Journal of Physical Chemistry C, 2009, 113, 6589-6595.	3.1	27
418	First-Principles Study of Carbon Monoxide Oxidation on Ag(111) in Presence of Subsurface Oxygen and Stepped Ag(221). Journal of Physical Chemistry C, 2009, 113, 8266-8272.	3.1	27
419	DFT studies on the reaction mechanism of cross-metathesis of ethylene and 2-butylene to propylene over heterogeneous Mo/HBeta catalyst. Journal of Molecular Catalysis A, 2010, 330, 99-106.	4.8	27
420	Density Functional Calculations on the Distribution, Acidity, and Catalysis of Ti ^{IV} and Ti ^{III} lons in MCMâ€⊋2 Zeolite. Chemistry - A European Journal, 2011, 17, 1614-1621.	3.3	27
421	Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. Journal of Energy Chemistry, 2014, 23, 694-700.	12.9	27
422	A new class of solid Lewis acid catalysts based on interlayer expansion of layered silicates of the RUB-36 type with heteroatoms. Journal of Materials Chemistry A, 2014, 2, 9709-9717.	10.3	27
423	Dynamic Structural Changes of SiO ₂ Supported Pt–Ni Bimetallic Catalysts over Redox Treatments Revealed by NMR and EPR. Journal of Physical Chemistry C, 2015, 119, 21219-21226.	3.1	27
424	Promoting oxygen evolution reaction by RuO2 nanoparticles in solid oxide CO2 electrolyzer. Energy Storage Materials, 2018, 13, 207-214.	18.0	27
425	Shapeâ€Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate. Angewandte Chemie, 2018, 130, 4782-4786.	2.0	27
426	Studies on the crystallization process of titanium silicalite-1 (TS-1) synthesized using tetrapropylammonium bromide as a template. Materials Chemistry and Physics, 2000, 66, 41-50.	4.0	26
427	Structure and acidity of Mo/H-MCM-22 catalysts studied by NMR spectroscopy. Catalysis Today, 2004, 97, 25-34.	4.4	26
428	Comparative X-ray Photoelectron Spectroscopic Study on the Desulfurization of Thiophene by Raney Nickel and Rapidly Quenched Skeletal Nickel. Journal of Physical Chemistry B, 2005, 109, 5186-5192.	2.6	26
429	Surface chemistry of NO and NO2 on the Pt(110)-(1×2) surface: A comparative study. Surface Science, 2006, 600, 4860-4869.	1.9	26
430	Comparative studies of redox behaviors of Pt–Co/SiO ₂ and Au–Co/SiO ₂ catalysts and their activities in CO oxidation. Catalysis Science and Technology, 2014, 4, 3151-3158.	4.1	26
431	Selective conversion of syngas to propane over ZnCrO -SSZ-39 OX-ZEO catalysts. Journal of Energy Chemistry, 2019, 36, 141-147.	12.9	26
432	Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors. Electrochemical Energy Reviews, 2020, 3, 581-612.	25.5	26

#	Article	IF	CITATIONS
433	Study with density functional theory method on methane dehydro-aromatization over Mo/HZSM-5 catalysts I: Optimization of active Mo species bonded to ZSM-5 zeolite. Journal of Chemical Physics, 2001, 114, 9125-9129.	3.0	25
434	Ultrasonic Synthesis of Silicaâ^'Alumina Nanomaterials with Controlled Mesopore Distribution without Using Surfactants. Langmuir, 2002, 18, 4111-4117.	3.5	25
435	Evidence for perimeter sites over SmOx-modified Rh(100) surface by CO chemisorption. Surface Science, 2004, 565, 269-278.	1.9	25
436	H2Adsorption on Fe/ZSM-5 Zeolite:Â A Theoretical Approach. Journal of Physical Chemistry B, 2006, 110, 22295-22297.	2.6	25
437	Templateâ€5ynthesized Porous Silicon Carbide as an Effective Host for Zeolite Catalysts. Chemistry - A European Journal, 2009, 15, 13449-13455.	3.3	25
438	Direct observation and spectroscopy of nanoscaled carboxylated carbonaceous fragments coated on carbon nanotubes. Chemical Communications, 2011, 47, 8373.	4.1	25
439	Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes. Journal of Natural Gas Chemistry, 2012, 21, 241-245.	1.8	25
440	NMR Study of Preferential Endohedral Adsorption of Methanol in Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 7803-7809.	3.1	25
441	Ionothermal synthesis process for aluminophosphate molecular sieves in the mixed water/ionic liquid system. Dalton Transactions, 2012, 41, 990-994.	3.3	25
442	Measurement of proton chemical shift anisotropy in solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2018, 93, 16-28.	2.3	25
443	Activation of CO and surface carbon species for conversion of syngas to light olefins on ZnCrO -Al2O3 catalysts. Applied Surface Science, 2019, 494, 353-360.	6.1	25
444	CO2 electrolysis at industrial current densities using anion exchange membrane based electrolyzers. Science China Chemistry, 2020, 63, 1711-1715.	8.2	25
445	Platinumâ€Decorated Ceria Enhances CO ₂ Electroreduction in Solid Oxide Electrolysis Cells. ChemSusChem, 2020, 13, 6290-6295.	6.8	25
446	The effect of cyclic oxidation-reduction pretreatments on an amorphous Ni80P20 catalyst: an XPS/UPS/ISS study. Applied Surface Science, 1994, 81, 341-346.	6.1	24
447	Oxygen-induced restructuring of Au(111) observed by reflection electron microscopy. Surface Science, 1998, 401, 469-475.	1.9	24
448	Temperature-programmed surface reaction study on C2-oxygenate synthesis over SiO2 and nanoporous zeolitic material supported Rh-Mn catalysts. Surface and Interface Analysis, 2001, 32, 224-227.	1.8	24
449	Methane Dehydroaromatization on Mo/HMCM-22 Catalysts: Effect of SiO2/Al2O3 Ratio of HMCM-22 Zeolite Supports. Catalysis Letters, 2006, 108, 25-30.	2.6	24
450	Unique Reactivity of Confined Metal Atoms on a Silicon Substrate. ChemPhysChem, 2008, 9, 975-979.	2.1	24

#	Article	IF	CITATIONS
451	Cooperative structure-directing effect in the synthesis of aluminophosphate molecular sieves in ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 2443.	2.8	24
452	New zeolite Al-COE-4: reaching highly shape-selective catalytic performance through interlayer expansion. Chemical Communications, 2012, 48, 11549.	4.1	24
453	A highly active and stable Pd–TiO2/CDC–SiC catalyst for hydrogenation of 4-carboxybenzaldehyde. Journal of Materials Chemistry, 2012, 22, 14155.	6.7	24
454	Direct conversion of syngas into hydrocarbons over a core–shell Cr-Zn@SiO2@SAPO-34 catalyst. Chinese Journal of Catalysis, 2015, 36, 1131-1135.	14.0	24
455	Applications of In Situ NMR in Catalytic Processes of Organic Reactions. Current Organic Chemistry, 2001, 5, 1017-1037.	1.6	24
456	Steering the reaction pathway of syngas-to-light olefins with coordination unsaturated sites of ZnGaOx spinel. Nature Communications, 2022, 13, 2742.	12.8	24
457	Growth of ultrafine zeolite Y crystals on metakaolin microspheres. Chemical Communications, 2000, , 1873-1874.	4.1	23
458	Preferential Occupation of Xenon in Zeolite MCM-22 As Revealed by129Xe NMR Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 9426-9432.	2.6	23
459	A simulation study on the absorption of molybdenum species in the channels of HZSM-5 zeolite. Journal of Molecular Catalysis A, 2001, 168, 225-232.	4.8	23
460	Decomposition of NO2 on Pt(110): formation of a new oxygen adsorption state. Surface Science, 2002, 506, L287-L292.	1.9	23
461	Investigation of the microporous structure and non-framework aluminum distribution in dealuminated nanosized HZSM-5 zeolite by 129Xe NMR spectroscopy. Microporous and Mesoporous Materials, 2002, 53, 145-152.	4.4	23
462	Step enhanced dehydrogenation of ethanol on Rh. Surface Science, 2008, 602, 3057-3063.	1.9	23
463	Formation of Mo-carbene active sites in Mo/Beta zeolite catalysts with different olefins: Theoretical exploration of possible reaction pathways and substituent effects. Catalysis Communications, 2008, 9, 2213-2216.	3.3	23
464	<i>In Situ</i> High Temperature High Pressure MAS NMR Study on the Crystallization of AIPO ₄ -5. Journal of Physical Chemistry C, 2016, 120, 1701-1708.	3.1	23
465	Structure and Electronic Properties of Interface-Confined Oxide Nanostructures. ACS Nano, 2017, 11, 11449-11458.	14.6	23
466	Activation of CO over Ultrathin Manganese Oxide Layers Grown on Au(111). ACS Catalysis, 2021, 11, 849-857.	11.2	23
467	Electrochemical synthesis of catalytic materials for energy catalysis. Chinese Journal of Catalysis, 2022, 43, 1001-1016.	14.0	23
468	Resolution deterioration in emission electron microscopy due to object roughness. Annalen Der Physik, 2000, 9, 441-451.	2.4	22

XINHE BAO

#	Article	IF	CITATIONS
469	Density functional theory study of proton hopping in MCM-22 zeolite. Chemical Physics Letters, 2004, 388, 363-366.	2.6	22
470	Methane dehydroaromatization over Mo/HZSM-5: A study of catalytic process. Catalysis Letters, 2006, 111, 111-114.	2.6	22
471	Promoting effect of Mg in supported Mo/HBeta–Al2O3 catalyst for cross-metathesis of ethene and butene-2 to propene. Journal of Molecular Catalysis A, 2009, 313, 38-43.	4.8	22
472	Controlled Transformation of the Structures of Surface Fe (FeO) and Subsurface Fe on Pt(111). Chinese Journal of Catalysis, 2010, 31, 24-32.	14.0	22
473	Oxygen intercalation under hexagonal boron nitride (h-BN) on Pt(111). Science Bulletin, 2015, 60, 1572-1579.	9.0	22
474	Towards the atomic-scale characterization of isolated iron sites confined in a nitrogen-doped graphene matrix. Applied Surface Science, 2017, 410, 111-116.	6.1	22
475	Direct structural identification of carbenium ions and investigation of host–guest interaction in the methanol to olefins reaction obtained by multinuclear NMR correlations. Chemical Science, 2017, 8, 8309-8314.	7.4	22
476	Selective CO ₂ electroreduction over an oxide-derived gallium catalyst. Journal of Materials Chemistry A, 2018, 6, 19743-19749.	10.3	22
477	Scalable and fast fabrication of graphene integrated micro-supercapacitors with remarkable volumetric capacitance and flexibility through continuous centrifugal coating. Journal of Energy Chemistry, 2021, 52, 284-290.	12.9	22
478	Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts. Nature Catalysis, 2022, 5, 594-604.	34.4	22
479	Surface segregation behaviors of amorphous Ni65Nb35 alloy under oxidation in O2 at various temperatures. Applied Surface Science, 1999, 137, 142-149.	6.1	21
480	Investigation of oxygen adsorption on Pd (100) with defects. Applied Surface Science, 2000, 158, 287-291.	6.1	21
481	DFT study of the acid strength of MCM-22 with double Si/Al substitutions in 12MR supercage. Computational and Theoretical Chemistry, 2005, 756, 39-46.	1.5	21
482	Possible active sites in Fe/ZSM-5 zeolite for the direct benzene hydroxylation to phenol: 1. μ-Oxo[Fe,M] species (M=Fe,Al). Journal of Molecular Structure, 2006, 797, 131-139.	3.6	21
483	Dispersion of Pt Catalysts Supported on Activated Carbon and Their Catalytic Performance in Methylcyclohexane Dehydrogenation. Chinese Journal of Catalysis, 2008, 29, 259-263.	14.0	21
484	Interactions of phosphorous molecules with the acid sites of H-Beta zeolite: Insights from solid-state NMR techniques and theoretical calculations. Journal of Molecular Catalysis A, 2009, 310, 113-120.	4.8	21
485	Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst. Science Bulletin, 2010, 55, 1117-1119.	1.7	21
486	Al-RUB-41: a shape-selective zeolitecatalyst from a layered silicate. Chemical Communications, 2011, 47, 1812-1814.	4.1	21

#	Article	IF	CITATIONS
487	Shape-selective synthesis of methylamines over the RRO zeolite Al-RUB-41. Journal of Catalysis, 2011, 278, 246-252.	6.2	21
488	Modulation of the textures and chemical nature of C–SiC as the support of Pd for liquid phase hydrogenation. Carbon, 2013, 57, 34-41.	10.3	21
489	Enhanced CO oxidation reaction over Pt nanoparticles covered with ultrathin graphitic layers. Carbon, 2016, 101, 324-330.	10.3	21
490	XRD and XPS studies on the ultra-uniform Raney-Ni catalyst prepared from the melt-quenching alloy. Surface and Interface Analysis, 2001, 32, 210-213.	1.8	20
491	Title is missing!. Catalysis Letters, 2002, 78, 37-41.	2.6	20
492	The Structure, Stability, and Reactivity of Mo-oxo Species in H-ZSM5 Zeolites:  Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 2081-2091.	3.1	20
493	Macro–mesoporous silicas complex and the carbon replica. Microporous and Mesoporous Materials, 2007, 100, 356-360.	4.4	20
494	Exploring the void structure and activity of RUB-39 based expanded materials using the hydroconversion of decane. Journal of Catalysis, 2011, 282, 47-53.	6.2	20
495	Ball-milling MoS 2 /carbon black hybrid material for catalyzing hydrogen evolution reaction in acidic medium. Journal of Energy Chemistry, 2015, 24, 608-613.	12.9	20
496	Independently tuning the power factor and thermal conductivity of SnSe via Ag2S addition and nanostructuring. Journal of Materials Chemistry A, 2018, 6, 7959-7966.	10.3	20
497	Dynamic observation of in-plane h-BN/graphene heterostructures growth on Ni(111). Nano Research, 2020, 13, 1789-1794.	10.4	20
498	Preparation and characterization of titanium-containing MFI from highly siliceous ZSM-5: effect of precursors synthesized with different templates. Materials Chemistry and Physics, 1999, 60, 215-220.	4.0	19
499	Imaging of three-dimensional objects in emission electron microscopy. Journal of Microscopy, 2001, 202, 480-487.	1.8	19
500	The Effect of Rh Particle Size on the Catalytic Performance of Porous Silica supported Rhodium Catalysts for CO Hydrogenation. Zeitschrift Fur Physikalische Chemie, 2005, 219, 949-961.	2.8	19
501	Influence of Calcination Temperature on the Stability of Fluorinated Nanosized HZSM-5 in the Methylation of Biphenyl. Catalysis Letters, 2006, 107, 209-214.	2.6	19
502	Carbon-Supported Silver Catalysts for CO Selective Oxidation in Excess Hydrogen. Journal of Natural Gas Chemistry, 2006, 15, 181-190.	1.8	19
503	Thermal decomposition of Mo(CO)6 on thin Al2O3 film: A combinatorial investigation by XPS and UPS. Surface Science, 2007, 601, 844-851.	1.9	19
504	Structure control of Pt–Sn bimetallic catalysts supported on highly oriented pyrolytic graphite (HOPG). Applied Surface Science, 2008, 254, 3808-3812.	6.1	19

XINHE BAO

#	Article	IF	CITATIONS
505	Catalysis on a metal surface with a graphitic cover. Chinese Journal of Catalysis, 2015, 36, 517-519.	14.0	19
506	Interlayer expansion using metal-linker units: Crystalline microporous silicate zeolites with metal centers on specific framework sites. Microporous and Mesoporous Materials, 2016, 222, 235-240.	4.4	19
507	High Thermoelectric Performance of New Rhombohedral Phase of GeSe stabilized through Alloying with AgSbSe ₂ . Angewandte Chemie, 2017, 129, 14301-14306.	2.0	19
508	CO Adsorption on the O-saturated Ag/Pt(110) Composite Surface:Â Direct Observation of the Diffusion of Adsorbed CO from Strongly Bound Pt Sites to Weakly Bound Ag Sites. Journal of Physical Chemistry B, 2002, 106, 5645-5647.	2.6	18
509	Adsorption and decomposition of Mo(CO)6 on thin Al2O3 films: fabrication of metallic molybdenum model catalyst. Applied Surface Science, 2004, 229, 43-50.	6.1	18
510	Density functional theory study of CHx (x=1–3) adsorption on clean and CO precovered Rh(111) surfaces. Journal of Chemical Physics, 2007, 127, 024705.	3.0	18
511	In situ introduction of dispersed metallic Ag nanoparticles into the channels of mesoporous carbon CMK-3. Chinese Chemical Letters, 2007, 18, 1017-1020.	9.0	18
512	Wavevector-dependent quantum-size effect in electron decay length at Pb thin film surfaces. Applied Physics Letters, 2008, 93, 093105.	3.3	18
513	Graphene as a surfactant for metal growth on solid surfaces: Fe on graphene/SiC(0001). Applied Physics Letters, 2014, 104, .	3.3	18
514	Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catalysis Science and Technology, 2016, 6, 7163-7171.	4.1	18
515	A versatile method for the encapsulation of various non-precious metal nanoparticles inside single-walled carbon nanotubes. Nano Research, 2018, 11, 3132-3144.	10.4	18
516	Origin of the Thickness-Dependent Oxidation of Ultrathin Cu Films on Au(111). Journal of Physical Chemistry C, 2018, 122, 8364-8372.	3.1	18
517	Crystal-plane-dependent redox reaction on Cu surfaces. Nano Research, 2020, 13, 1677-1685.	10.4	18
518	Selective synthesis of <i>para</i> -xylene and light olefins from CO ₂ /H ₂ in the presence of toluene. Catalysis Science and Technology, 2021, 11, 4521-4528.	4.1	18
519	Design of Lewis Pairs via Interface Engineering of Oxide–Metal Composite Catalyst for Water Activation. Journal of Physical Chemistry Letters, 2021, 12, 1443-1452.	4.6	18
520	In situ NMR study of asymmetric borane reduction reaction—an abnormal factor in the temperature effect on the bis-oxazaborolidine catalyst and the relationship between the catalyst structure and selectivity. Tetrahedron: Asymmetry, 2000, 11, 3351-3359.	1.8	17
521	Synthesis and characterization of galloaluminosilicate/gallosilicalite (MFI) and their evaluation in methane dehydro-aromatization. Journal of Molecular Catalysis A, 2001, 168, 139-146.	4.8	17
522	Density Functional Theory Study of Chemical Composition Influence on the Acidity of Hâ^'MCM-22 Zeolite. Journal of Physical Chemistry B, 2004, 108, 18228-18233.	2.6	17

#	Article	IF	CITATIONS
523	Enhanced Methanol Dissociation on Nanostructured 2D Al Overlayers. Journal of Physical Chemistry C, 2007, 111, 13524-13530.	3.1	17
524	Adsorption, reduction and storage of hydrogen within ZSM-5 zeolite exchanged with various ions: A comparative theoretical study. Microporous and Mesoporous Materials, 2012, 161, 168-178.	4.4	17
525	Layered precursors for new zeolitic materials: Synthesis and characterization of B-RUB-39 and its condensation product B-RUB-41. Microporous and Mesoporous Materials, 2012, 147, 102-109.	4.4	17
526	Supercapacitors: Stacked‣ayer Heterostructure Films of 2D Thiophene Nanosheets and Graphene for Highâ€Rate Allâ€Solidâ€State Pseudocapacitors with Enhanced Volumetric Capacitance (Adv. Mater. 3/2017). Advanced Materials, 2017, 29, .	21.0	17
527	Highly selective methanol-to-olefin reaction on pyridine modified H-mordenite. Journal of Energy Chemistry, 2017, 26, 354-358.	12.9	17
528	Tailoring thermal conductivity of bulk graphene oxide by tuning the oxidation degree. Chinese Chemical Letters, 2018, 29, 711-715.	9.0	17
529	Acidity and Local Confinement Effect in Mordenite Probed by Solid-State NMR Spectroscopy. Journal of Physical Chemistry Letters, 2021, 12, 2413-2422.	4.6	17
530	Recent progress in dipolar recoupling techniques under fast MAS in solid-state NMR spectroscopy. Solid State Nuclear Magnetic Resonance, 2021, 112, 101711.	2.3	17
531	A vanadium-doped BSCF perovskite for CO2 electrolysis in solid oxide electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 19814-19821.	7.1	17
532	On the formation of vertically oriented MCM-22 zeolite crystal films. Microporous and Mesoporous Materials, 2001, 50, 69-76.	4.4	16
533	Initial Growth and Oxygen Adsorption of Silver on Al2O3Film. Journal of Physical Chemistry C, 2007, 111, 3981-3985.	3.1	16
534	The formation mechanism of Mo-methylidene species over Mo/HBeta catalysts for heterogeneous olefin metathesis: A density functional theory study. Journal of Molecular Catalysis A, 2009, 300, 41-47.	4.8	16
535	The Effect of Support Acidity on Olefin Metathesis over Heterogeneous Mo/HBeta Catalyst: A DFT Study. Catalysis Letters, 2010, 138, 116-123.	2.6	16
536	From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 2015, 27, 316-326.	6.7	16
537	Mixed conduction properties of pristine bulk graphene oxide. Carbon, 2016, 101, 338-344.	10.3	16
538	Modulating the CO methanation activity of Ni catalyst by nitrogen doped carbon. Journal of Energy Chemistry, 2018, 27, 898-902.	12.9	16
539	Nanoimaging of Electronic Heterogeneity in Bi ₂ Se ₃ and Sb ₂ Te ₃ Nanocrystals. Advanced Electronic Materials, 2018, 4, 1700377. 	5.1	16
540	A near ambient pressure photoemission electron microscope (NAP-PEEM). Ultramicroscopy, 2019, 200, 105-110.	1.9	16

#	Article	IF	CITATIONS
541	Glass-like electronic and thermal transport in crystalline cubic germanium selenide. Journal of Energy Chemistry, 2020, 45, 83-90.	12.9	16
542	Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction. Journal of Energy Chemistry, 2021, 52, 372-376.	12.9	16
543	Exploring the phase transformation in ZnO/Cu(111) model catalysts in CO2 hydrogenation. Journal of Energy Chemistry, 2021, 60, 150-155.	12.9	16
544	Combined Single-Pass Conversion of Methane Via Oxidative Coupling and Dehydroaromatization. Catalysis Letters, 2003, 89, 275-279.	2.6	15
545	Recyclable Heterogeneous Rh/SiO2Catalyst Enhanced by Organic PPh3Ligand. Chemistry Letters, 2004, 33, 630-631.	1.3	15
546	Silver catalysts supported over activated carbons for the selective oxidation of CO in excess hydrogen: effects of different treatments on the supports. Catalysis Letters, 2006, 111, 133-139.	2.6	15
547	DFT Study on the NMR Chemical Shifts of Molecules Confined in Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 23418-23424.	3.1	15
548	Facile filling of metal particles in small carbon nanotubes for catalysis. Journal of Energy Chemistry, 2013, 22, 251-256.	12.9	15
549	Exploring the ring current of carbon nanotubes by first-principles calculations. Chemical Science, 2015, 6, 902-908.	7.4	15
550	Segregation growth of epitaxial graphene overlayers on Ni(111). Science Bulletin, 2016, 61, 1536-1542.	9.0	15
551	The role of water in methane adsorption and diffusion within nanoporous silica investigated by hyperpolarized 129Xe and 1H PFG NMR spectroscopy. Nano Research, 2018, 11, 360-369.	10.4	15
552	Highâ€Quality Gasoline Directly from Syngas by Dual Metal Oxide–Zeolite (OXâ€ZEO) Catalysis. Angewandte Chemie, 2019, 131, 7478-7482.	2.0	15
553	Synergetic enhancement of thermoelectric performance in a Bi _{0.5} Sb _{1.5} Te ₃ /SrTiO ₃ heterostructure. Journal of Materials Chemistry A, 2020, 8, 10839-10844.	10.3	15
554	Designing Electrolyzers for Electrocatalytic CO ₂ Reduction. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	15
555	Modulating the Formation and Evolution of Surface Hydrogen Species on ZnO through Cr Addition. ACS Catalysis, 2022, 12, 6255-6264.	11.2	15
556	Coupling between Adjacent Crystal Planes during CO + OadReaction on a Defective Pd(100) Surface. Langmuir, 2001, 17, 3629-3634.	3.5	14
557	¹⁷ O Solid-State NMR Study on the Size Dependence of Oxygen Activation over Silver Catalysts. Journal of Physical Chemistry C, 2012, 116, 25846-25851.	3.1	14
558	Silicon carbide-supported iron nanoparticles encapsulated in nitrogen-doped carbon for oxygen reduction reaction. Catalysis Science and Technology, 2016, 6, 2949-2954.	4.1	14

#	Article	IF	CITATIONS
559	Observation and Manipulation of Visible Edge Plasmons in Bi ₂ Te ₃ Nanoplates. Nano Letters, 2018, 18, 2879-2884.	9.1	14
560	Interface-controlled synthesis of CeO2(111) and CeO2(100) and their structural transition on Pt(111). Chinese Journal of Catalysis, 2019, 40, 204-213.	14.0	14
561	Chain Mail for Catalysts. Angewandte Chemie, 2020, 132, 15406-15409.	2.0	14
562	Controlled growth of uniform silver clusters on HOPG. Ultramicroscopy, 2005, 105, 1-5.	1.9	13
563	Coverage and Substrate Effects on the Structural Change of FeOx Nanostructures Supported on Pt. Topics in Catalysis, 2014, 57, 890-898.	2.8	13
564	A comparative study in structure and reactivity of "FeO x -on-Pt―and "NiO x -on-Pt―catalysts. Science China Chemistry, 2015, 58, 162-168.	8.2	13
565	Factors controlling the CO intercalation of h-BN overlayers on Ru(0001). Physical Chemistry Chemical Physics, 2016, 18, 24278-24284.	2.8	13
566	Investigation of water assisted phase transformation process from AlPO4-5 to AlPO4-tridymite. Microporous and Mesoporous Materials, 2016, 223, 241-246.	4.4	13
567	Dynamic nanoscale imaging of enriched CO adlayer on Pt(111) confined under h-BN monolayer in ambient pressure atmospheres. Nano Research, 2019, 12, 85-90.	10.4	13
568	Scalable fabrication of in-plane microscale self-powered integrated systems for fast-response and highly selective dual-channel gas detection. Nano Energy, 2021, 88, 106253.	16.0	13
569	A mechanistic study of syngas conversion to light olefins over OXZEO bifunctional catalysts: insights into the initial carbon–carbon bond formation on the oxide. Catalysis Science and Technology, 2022, 12, 1289-1295.	4.1	13
570	Preparation and adsorption properties of Mo2N model catalyst. Applied Surface Science, 2000, 161, 86-93.	6.1	12
571	Xenon probe for detecting the microporous structure of nanosized HZSM-5 zeolite. Chemical Communications, 2001, , 293-294.	4.1	12
572	Combined Single-pass Conversion of Methane Via Oxidative Coupling and Dehydro-aromatization. Catalysis Letters, 2005, 105, 77-82.	2.6	12
573	Study on Conformation Interconversion of 3-Alkyl-4-acetyl-3,4-dihydro-2H-1,4-benzoxazines from Dynamic NMR Experiments and ab Initio Density Functional Calculations. Journal of Physical Chemistry B, 2005, 109, 18690-18698.	2.6	12
574	Density Functional Theoretical Investigations on Various Nanostructural Zeolite Surfaces. Journal of Physical Chemistry B, 2006, 110, 23388-23394.	2.6	12
575	Active Sites in Fe/ZSM-5 Zeolite. Catalysis Surveys From Asia, 2010, 14, 85-94.	2.6	12
576	Heteroepitaxial growth of wafer scale highly oriented graphene using inductively coupled plasma chemical vapor deposition. 2D Materials, 2016, 3, 021001.	4.4	12

#	Article	IF	CITATIONS
577	CO adsorption on a Pt(111) surface partially covered with FeO x nanostructures. Journal of Energy Chemistry, 2017, 26, 602-607.	12.9	12
578	Oxygen Evolution Reaction over the Au/YSZ Interface at High Temperature. Angewandte Chemie, 2019, 131, 4665-4669.	2.0	12
579	Enhancing CO 2 Electroreduction to Methane with a Cobalt Phthalocyanine and Zinc–Nitrogen–Carbon Tandem Catalyst. Angewandte Chemie, 2020, 132, 22594-22599.	2.0	12
580	Accurate heteronuclear distance measurements at all magic-angle spinning frequencies in solid-state NMR spectroscopy. Chemical Science, 2021, 12, 11554-11564.	7.4	12
581	An AES, XPS and TDS study on the growth and property of silver thin film on the Pt()-(1×2) surface. Surface Science, 2002, 514, 420-425.	1.9	11
582	Template-assisted syntheses of two novel porous zirconium methylphosphonates. Microporous and Mesoporous Materials, 2005, 81, 175-183.	4.4	11
583	Peroxo and superoxo anions: A DFT study on Fe/ZSM-5 zeolite. Catalysis Communications, 2007, 8, 1981-1984.	3.3	11
584	Modulation of surface reactivity via electron confinement in metal quantum well films: O2 adsorption on Pbâ^•Si(111). Journal of Chemical Physics, 2008, 129, 014704.	3.0	11
585	Acetic Acid from the Carbonylation of Chloride Methane Over Rhodium Based Catalysts. Catalysis Letters, 2009, 130, 286-290.	2.6	11
586	Reaction Mechanisms of H ₂ Reduction and N ₂ O Decomposition on Fe/ZSM-5 Zeolite: A Density Functional Theoretical Study. Journal of Physical Chemistry C, 2009, 113, 18184-18190.	3.1	11
587	Quinone tailored selective oxidation of methane over palladium catalyst with molecular oxygen as an oxidant. Chemical Communications, 2009, , 7488.	4.1	11
588	Effect of Substrate Surface Reconstruction on Interaction with Adsorbates: Pt on 6H-SiC(0001). Langmuir, 2010, 26, 7227-7232.	3.5	11
589	Growth and characterization of Au, Ni and Au–Ni nanoclusters on 6H-SiC(0001) carbon nanomesh. Surface Science, 2012, 606, 1313-1322.	1.9	11
590	Framework Stability and BrÃ,nsted Acidity of Isomorphously Substituted Interlayerâ€Expanded Zeolite COEâ€4: A Density Functional Theory Study. ChemPhysChem, 2014, 15, 1700-1707.	2.1	11
591	Self-Assembly of Atomically Thin and Unusual Face-Centered Cubic Re Nanowires within Carbon Nanotubes. Chemistry of Materials, 2015, 27, 1569-1573.	6.7	11
592	Structural stability and Lewis acidity of tetravalent Ti, Sn, or Zr-linked interlayer-expanded zeolite COE-4: A DFT study. Microporous and Mesoporous Materials, 2015, 218, 160-166.	4.4	11
593	Graphene-metal interaction and its effect on the interface stability under ambient conditions. Applied Surface Science, 2017, 412, 262-270.	6.1	11
594	Structural transformation of h-BN overlayers on Pt(111) in oxidative atmospheres. Physical Chemistry Chemical Physics, 2018, 20, 11013-11020.	2.8	11

#	Article	IF	CITATIONS
595	Identification of different carbenium ion intermediates in zeolites with identical chabazite topology via13C–13C through-bond NMR correlations. RSC Advances, 2019, 9, 12415-12418.	3.6	11
596	Temperatureâ€Dependent CO ₂ Electroreduction over Feâ€Nâ€C and Niâ€Nâ€C Singleâ€Atom Catal Angewandte Chemie, 2021, 133, 26786-26790.	ysts. 2.0	11
597	Direct Synthesis of Isoparaffin-rich Gasoline from Syngas. ACS Energy Letters, 2022, 7, 1462-1468.	17.4	11
598	The study of Ti doped ZSM-5 particles and cavities inside them. Journal of Crystal Growth, 2001, 231, 577-588.	1.5	10
599	Dispersion and site-blocking effect of molybdenum oxide for CO chemisorption on the Pt(110) substrate. Journal of Molecular Catalysis A, 2007, 268, 213-220.	4.8	10
600	Organic Molecule-Modulated Phase Evolution of Inorganic Mesostructures. Langmuir, 2008, 24, 2372-2380.	3.5	10
601	Fabrication and catalytic tests of MCM-22/silicon carbide structured catalysts. Dalton Transactions, 2010, 39, 9705.	3.3	10
602	Dispersion of metal nanoparticles on carbon nanotubes with few surface oxygen functional groups. Materials Letters, 2011, 65, 1522-1524.	2.6	10
603	A highly active and stable Pd/B-doped carbon catalyst for the hydrogenation of 4-carboxybenzaldehyde. Journal of Energy Chemistry, 2019, 31, 154-158.	12.9	10
604	Surface and Subsurface Structures of the Pt–Fe Surface Alloy on Pt(111). Journal of Physical Chemistry C, 2019, 123, 17225-17231.	3.1	10
605	Pentacoordinated Al ³⁺ â€Stabilized Active Pd Structures on Al ₂ O ₃ â€Coated Palladium Catalysts for Methane Combustion. Angewandte Chemie, 2019, 131, 12171-12176.	2.0	10
606	Probing surface defects of ZnO using formaldehyde. Journal of Chemical Physics, 2020, 152, 074714.	3.0	10
607	Atomic structures and electronic properties of Cr-doped ZnO() surfaces. Chinese Journal of Catalysis, 2021, 42, 971-979.	14.0	10
608	Interface-enhanced thermoelectric output power in CrN/SrTiO3â^' heterostructure. Journal of Energy Chemistry, 2022, 64, 16-22.	12.9	10
609	Direct observation of subsurface oxygen on the defects of Pd(100). Surface Science, 1999, 439, L803-L807.	1.9	9
610	Methane Aromatization in the Absence of Oxygen Over Mo/H[B]ZSM-5 Catalysts. Reaction Kinetics and Catalysis Letters, 2000, 70, 349-356.	0.6	9
611	Molybdenum deposition on the thin alumina film: A combinatorial investigation by HREELS, XPS and UPS. Chemical Physics Letters, 2007, 439, 313-317.	2.6	9
612	Controlled growth of metal-free vertically aligned CNT arrays on SiC surfaces. Chemical Physics Letters, 2011, 503, 247-251.	2.6	9

#	Article	IF	CITATIONS
613	Insights into the Site-Selective Adsorption of Methanol and Water in Mordenite Zeolite by ¹²⁹ Xe NMR Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 17368-17374.	3.1	9
614	Dynamic transformation between bilayer islands and dinuclear clusters of Cr oxide on Au(111) through environment and interface effects. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
615	Oriented growth of MCM-22 zeolite films. Chemical Communications, 2000, , 1713-1714.	4.1	8
616	On the Reactivity of Mo Species for Methane Partial Oxidation on Mo/HMCM-22 Catalysts. Catalysis Letters, 2004, 97, 209-215.	2.6	8
617	Multiple Coordination of CO on Molybdenum Nanoparticles:Â Evidence for Intermediate Mox(CO)ySpecies by XPS and UPS. Journal of Physical Chemistry B, 2006, 110, 26105-26113.	2.6	8
618	An experimental–theoretical approach to the kinetics and mechanism of Michael type addition: α,β-Unsaturated tungsten Fischer carbene complex as the substrate. Journal of Organometallic Chemistry, 2006, 691, 1984-1992.	1.8	8
619	A DFT study of olefin metathesis over heterogeneous Mo/HBeta catalyst: The influence of Mo oxidation state. Computational and Theoretical Chemistry, 2009, 913, 167-172.	1.5	8
620	Nanosized FeOx overlayers on Pt-skin surfaces for low temperature CO oxidation. Chinese Journal of Catalysis, 2013, 34, 2029-2035.	14.0	8
621	Carbon in the Catalysis Community. ChemCatChem, 2015, 7, 2724-2725.	3.7	8
622	A new zeolite formed from interlayer expansion of the precursor COK-5. Microporous and Mesoporous Materials, 2015, 214, 204-209.	4.4	8
623	Displacement and Diffusion of Methane and Carbon Dioxide in SBA-15 Studied by NMR. Journal of Physical Chemistry C, 2017, 121, 2481-2486.	3.1	8
624	Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy. Science China Chemistry, 2017, 60, 656-662.	8.2	8
625	Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species. Applied Physics Letters, 2018, 112, 171601.	3.3	8
626	Tuning the structures of two-dimensional cuprous oxide confined on Au(111). Nano Research, 2018, 11, 5957-5967.	10.4	8
627	Growth and structures of monolayer and bilayer CeO nanostructures on Au(111). Surface Science, 2019, 679, 31-36.	1.9	8
628	Structural investigation of interlayer-expanded zeolite by hyperpolarized 129Xe and 1H NMR spectroscopy. Microporous and Mesoporous Materials, 2019, 288, 109555.	4.4	8
629	Effect of Nearâ€Surface Dopants on the Epitaxial Growth of hâ€BN on Metal Surfaces. Advanced Materials Interfaces, 2019, 6, 1801906.	3.7	8
630	Investigation on the Thermal Stability of La/ZSM-5 Zeolite and the La ³⁺ Species. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 60-64.	4.9	8

#	Article	IF	CITATIONS
631	<i>In</i> - <i>situ</i> APXPS and STM Study of the Activation of H ₂ on ZnO(10\${m{ar 1}}\$0) Surface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1366-1372.	4.9	8
632	Preparation of titanium-containing zeolites with MEL structure from B-ZSM-11 and their characterization. Applied Catalysis A: General, 2000, 192, 157-163.	4.3	7
633	In situ solid state NMR observation of the methanol-to-hydrocarbons (MTH) process over nanosized and microsized HZSM-5 zeolites. Physical Chemistry Chemical Physics, 2002, 4, 4602-4607.	2.8	7
634	A Facile and Effective Method for the Distribution of Mo/HZSM-5 Catalyst Active Centers. Catalysis Letters, 2003, 89, 75-79.	2.6	7
635	Density Functional Theory Study on Structure of Molybdenum Carbide Loaded on MCM-22 Zeolite and Mechanism for Methane Activation. Chinese Journal of Catalysis, 2007, 28, 180-186.	14.0	7
636	Interaction of gas phase atomic hydrogen with Pt(111): Direct evidence for the formation of bulk hydrogen species. Science in China Series B: Chemistry, 2007, 50, 91-96.	0.8	7
637	First-principle studies on the exceptionally active triplet oxygen species in microporous zeolite materials: Reservation and catalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 122-127.	3.9	7
638	In-situ 13C MAS NMR investigation of solvent effect on the formation of phenylacetaldehyde over TS-1 zeolite. Journal of Catalysis, 2009, 267, 177-180.	6.2	7
639	Temperature Dependence of the Formation of Graphene and Subsurface Carbon on Ru(0001) and Its Effect on Surface Reactivity. ChemPhysChem, 2010, 11, 995-998.	2.1	7
640	Direct Conversion of Syngas-to-Hydrocarbons over Higher Alcohols Synthesis Catalysts Mixed with HZSM-5. Industrial & Engineering Chemistry Research, 2014, 53, 13928-13934.	3.7	7
641	Preface: catalysis—key to a sustainable future. National Science Review, 2015, 2, 137-137.	9.5	7
642	Growth of Cu/SSZ-13 on SiC for selective catalytic reduction of NO with NH 3. Chinese Journal of Catalysis, 2018, 39, 71-78.	14.0	7
643	Oxidation-induced structural transition of two-dimensional iron oxide on Au(111). Journal Physics D: Applied Physics, 2021, 54, 204003.	2.8	7
644	DNP NMR reveals the hidden surface C–C bond growth mechanism over ZnAlO during syngas conversion. Journal of Energy Chemistry, 2022, 67, 640-644.	12.9	7
645	In situ reconstruction of defect-rich SnO2 through an analogous disproportionation process for CO2 electroreduction. Chemical Engineering Journal, 2022, 446, 137444.	12.7	7
646	Growth of zeolite KSO1 on calcined kaolin microspheres. Journal of Materials Chemistry, 1999, 9, 2965-2966.	6.7	6
647	Single-crystal Pt nanorods with tunable lengths fabricated by a simple glycol-assisted vacuum impregnation method. Dalton Transactions, 2009, , 1894.	3.3	6
648	Dynamic structural changes of perovskite-supported metal catalysts during cyclic redox treatments and effect on catalytic CO oxidation. Chinese Journal of Catalysis, 2013, 34, 889-897.	14.0	6

XINHE BAO

#	Article	IF	CITATIONS
649	Epitaxial Growth of Asymmetricallyâ€Doped Bilayer Graphene for Photocurrent Generation. Small, 2014, 10, 2245-2250.	10.0	6
650	Microscale Energyâ€Storage Devices: The Road Towards Planar Microbatteries and Microâ€Supercapacitors: From 2D to 3D Device Geometries (Adv. Mater. 50/2019). Advanced Materials, 2019, 31, 1970351.	21.0	6
651	Active sites for H2 and H2O activation over bifunctional ZnO-Pt(1 1 1) model catalysts. Applied Surface Science, 2020, 503, 144204.	6.1	6
652	Oxidation-induced segregation of FeO on the Pd-Fe alloy surface. Applied Surface Science, 2020, 525, 146484.	6.1	6
653	Predominance of Subsurface and Bulk Oxygen Vacancies in Reduced Manganese Oxide. Journal of Physical Chemistry C, 2021, 125, 7990-7998.	3.1	6
654	Low-temperature heat capacity and thermodynamic properties of endo-Tricyclo[5.2.1.02,6]decane. Journal of Chemical Thermodynamics, 2003, 35, 1897-1903.	2.0	5
655	Synthesis and spectroscopic study of mesoporous aluminum methylphosphonate foam templated by dibutyl methylphosphonate. Microporous and Mesoporous Materials, 2003, 62, 61-71.	4.4	5
656	On the Propagation Rate of the Chemical Waves Observed during the Course of CO Oxidation on a Ag/Pt(110) Composite Surface. Journal of Physical Chemistry B, 2004, 108, 8390-8396.	2.6	5
657	Template-assisted syntheses of porous metal methylphosphonates. Journal of Porous Materials, 2006, 13, 73-80.	2.6	5
658	Configuration of MFI-type zeolite interacting with the probe molecule P(CH3)3 – a theoretical study. Structural Chemistry, 2007, 18, 353-356.	2.0	5
659	Oxygen adsorption on Agâ^•Si(111)â€7×7 surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 62-67.	2.1	5
660	MoOx-promoted Pt catalysts for the water gas shift reaction at low temperatures. Chinese Journal of Catalysis, 2015, 36, 750-756.	14.0	5
661	Applications of PEEM/LEEM in Dynamic Studies of Surface Physics and Chemistry of Two-Dimensional Atomic Crystals. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 171-182.	4.9	5
662	Facilitated Diffusion of Methane in Pores with a Higher Aromaticity. Journal of Physical Chemistry C, 2016, 120, 19885-19889.	3.1	5
663	Pd supported on NC@SiC as an efficient and stable catalyst for 4-carboxybenzaldehyde hydrogenation. Catalysis Communications, 2018, 110, 79-82.	3.3	5
664	Tunable deep ultraviolet laser based near ambient pressure photoemission electron microscope for surface imaging in the millibar regime. Review of Scientific Instruments, 2020, 91, 113704.	1.3	5
665	Câ^'C Bond Formation in Syngas Conversion over Zinc Sites Grafted on ZSMâ€5 Zeolite. Angewandte Chemie, 2020, 132, 6591-6596.	2.0	5
666	XPS STUDY OF ADSORPTION OF OXYGEN ON SILVER. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1986, 2, 1-5.	4.9	5

#	Article	IF	CITATIONS
667	Modulated hydrocarbon distribution of gasoline deriving from butene conversion in the presence of syngas. Journal of Energy Chemistry, 2022, , .	12.9	5
668	Enhanced formation of multi-branched isoparaffins in syngas conversion by ZnCrOx-MCM-22 composites. Applied Catalysis B: Environmental, 2022, 316, 121628.	20.2	5
669	An atomic bricklaying rule during the initial growth of silver thin film on the Pt(110)-(1×2) surface. Surface Science, 2001, 478, L345-L348.	1.9	4
670	Thermodynamic studies of monuron. Thermochimica Acta, 2004, 414, 131-135.	2.7	4
671	Two CrIII containing metal-1-hydroxyethylidenediphosphonate compounds: Synthesis, structure, and morphology. Crystal Research and Technology, 2006, 41, 1049-1054.	1.3	4
672	<i>In situ</i> Raman spectroscopy study of metal-enhanced hydrogenation and dehydrogenation of VO ₂ . Journal of Physics Condensed Matter, 2016, 28, 434003.	1.8	4
673	Mapping the dynamics of methanol and xenon co-adsorption in SWNTs by <i>in situ</i> continuous-flow hyperpolarized ¹²⁹ Xe NMR. Physical Chemistry Chemical Physics, 2019, 21, 3287-3293.	2.8	4
674	Visualizing Formation of Tungsten Carbide Model Catalyst and its Interaction with Oxygen. ChemCatChem, 2020, 12, 1036-1045.	3.7	4
675	Atomicâ€Scale Insight into Exsolution of CoFe Alloy Nanoparticles in La 0.4 Sr 0.6 Co 0.2 Fe 0.7 Mo 0.1 O 3â°' Î′ with Efficient CO 2 Electrolysis. Angewandte Chemie, 2020, 132, 16102-16107.	2.0	4
676	Strain and support effects on phase transition and surface reactivity of ultrathin ZnO films: DFT insights. AIP Advances, 2020, 10, .	1.3	4
677	Probing active species for CO hydrogenation over ZnCr2O4 catalysts. Chinese Journal of Catalysis, 2022, 43, 2017-2025.	14.0	4
678	Adsorption and reaction of CO and O2 on the Ag/Pt(110) surface studied by photoemission electron microscopy. Science Bulletin, 2001, 46, 998-1001.	1.7	3
679	Total assignment of NMR spectral lines of synthesized mono- and diacyl derivatives of diosgenyl saponins. Magnetic Resonance in Chemistry, 2002, 40, 789-792.	1.9	3
680	Syntheses and structures of sodium aluminodiphosphonates with different morphologies (diphosphonate=1-hydroxyethylidenediphosphonate). Journal of Crystal Growth, 2004, 264, 400-408.	1.5	3
681	Microporous ZSM-5 zeolite anchors the exceptionally active triplet oxygen species: Mechanistic studies. Microporous and Mesoporous Materials, 2008, 113, 583-587.	4.4	3
682	Photoemission study of CCl4 adsorption on Si(111)-7×7. Surface Science, 2008, 602, 2183-2188.	1.9	3
683	A silica-immobilized Pt2+ catalyst for the selective, aerobic oxidation of methane via an electron-transfer chain. Journal of Natural Gas Chemistry, 2008, 17, 120-124.	1.8	3
684	Local structure of titania decorated double-walled carbon nanotube characterized by scanning transmission X-ray microscopy. Journal of Chemical Physics, 2012, 136, 174701.	3.0	3

#	Article	IF	CITATIONS
685	In-situ 31P MAS NMR probing of the active centers in Ti silicalite molecular sieve. Catalysis Communications, 2015, 62, 75-78.	3.3	3
686	Interface-confined triangular FeOx nanoclusters on Pt(111). Journal of Chemical Physics, 2019, 151, 214704.	3.0	3
687	Studies on the TS-1 Zeolites Synthesized by Tetrapropylammonium Bromide as Template. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 906-912.	4.9	3
688	Selective Oxidation of Methane to Methanol over Palla-dium-Metallophthalocyanine Composite Catalysts at Room Temperature. Chinese Journal of Catalysis, 2010, 31, 302-306.	14.0	3
689	Enhanced Ammonia Synthesis Activity of Ru Supported on Nitrogen-Doped Carbon Nanotubes. Chinese Journal of Catalysis, 2014, 32, 1418-1423.	14.0	3
690	Achieving flexible large-scale reactivity tuning by controlling the phase, thickness and support of two-dimensional ZnO. Chemical Science, 2021, 12, 15284-15290.	7.4	3
691	Dynamic Structural Changes of Iron Oxide Nanostructures On Cu(111). Journal of Physical Chemistry C, 2022, 126, 2041-2048.	3.1	3
692	Dynamic chemical processes on ZnO surfaces tuned by physisorption under ambient conditions. Journal of Energy Chemistry, 2022, , .	12.9	3
693	The â€~energy revolution' calls for technological innovation. National Science Review, 2022, 9, .	9.5	3
694	Dimerization of 1â€butene via zirconiumâ€based Ziegler–Natta catalyst. Catalysis Letters, 2000, 64, 147-150.	2.6	2
695	Studies on the surface migration of adsorbed oxygen from noble metals to silver over binary catalysts. Surface and Interface Analysis, 2001, 32, 179-182.	1.8	2
696	Formation of the V Center on H-Type Zeolites with Thermal Treatment. Langmuir, 2002, 18, 1200-1205.	3.5	2
697	Formation of Periodic Arrays of O Vacancy Clusters on Monolayer FeO Islands Grown on Pt(111). Chinese Journal of Catalysis, 2010, 31, 1013-1018.	14.0	2
698	Charge effects on alkanes and the potential applications in selective catalysis: insights from theoretical studies. Molecular Simulation, 2010, 36, 204-211.	2.0	2
699	Monolayer Films: Monolayer MoS2Growth on Au Foils and On-Site Domain Boundary Imaging (Adv.) Tj ETQq1 1 0	.784314 r 14.9	rgBT /Overlo
700	Step-confined thin film growth via near-surface atom migration. Nano Research, 2020, 13, 1552-1557.	10.4	2
701	A Career in Catalysis: Robert SchlĶgl. ACS Catalysis, 2021, 11, 6243-6260.	11.2	2
702	A Comparative Study of Methanol to Olefins over SSZ-13 and RUB-50 Zeolites. Chinese Journal of Catalysis, 2011, 32, 293-298.	14.0	2

#	Article	IF	CITATIONS
703	Multinuclear Solid-State NMR Characterization of the Coke on Mo/Hβ-Al ₂ O ₃ Catalyst for Olefin Metathesis. Chinese Journal of Catalysis, 2010, 31, 186-190.	14.0	2
704	Structure of Highly Siliceous ZSM-5 Zeolites and Ti-ZSM-5 Zeolites Obtained by Indirect Synthesis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1998, 14, 320-326.	4.9	2
705	Cuâ€ZSMâ€5/Ni net composite used as DeNOx catalyst. Catalysis Letters, 2000, 66, 237-240.	2.6	1
706	Ethylenediammonium disodium (1-hydroxyethylidene)diphosphonate tetrahydrate, [NH3(CH2)2NH3]Na2(hedp)·4H2O. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m521-m523.	0.2	1
707	Preferential occupation of molybdenum on the thin alumina film: Characterization by CO titration. Catalysis Today, 2008, 131, 28-34.	4.4	1
708	A comparative study of CCl ₄ reactions on Ag and Si surfaces by <i>in situ</i> ultraviolet photoemission electron microscopy. Journal of Physics Condensed Matter, 2009, 21, 314014.	1.8	1
709	Controlled Transformation of the Structures of Surface Fe (FeO) and Subsur-face Fe on Pt(111). Chinese Journal of Catalysis, 2010, 31, 24-32.	14.0	1
710	MAS NMR studies of modified HY zeolites. Science Bulletin, 2000, 45, 325-330.	1.7	0
711	Preparation and properties of the SmOx/Rh(100) model surface. Science Bulletin, 2002, 47, 1184-1186.	1.7	0
712	Recyclable Heterogeneous Rh/SiO2 Catalyst Enhanced by Organic PPh3 Ligand ChemInform, 2004, 35, no.	0.0	0
713	A multinuclear MAS NMR study on the stability of Ph3P-Rh/SBA-15 catalysts for hydroformylation of propylene. Studies in Surface Science and Catalysis, 2007, 170, 806-811.	1.5	0
714	The Dalian National Laboratory for Clean Energy. Energy and Environmental Science, 2012, 5, 6277.	30.8	0
715	Aberration-corrected STEM of Four-atom Rhenium Nanowires Confined within Carbon Nanotubes. Microscopy and Microanalysis, 2015, 21, 2255-2256.	0.4	0
716	Innenrücktitelbild: A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye‧ensitized Solar Cells (Angew. Chem. 23/2016). Angewandte Chemie, 2016, 128, 6905-6905.	2.0	0
717	Low-Temperature Synthesis and Characterization of AlPO-Cristobalite in Ionic Liquid. Chinese Journal of Catalysis, 2010, 31, 776-780.	14.0	0
718	å,¬åŒ–基çj€ç†è®ºç"ç©¶å'展浅æž——å¼è¿°å,¬åŒ–ä,çš"é™åŸŸæ•^应(代åº). Sc	ien tia Sini	ca G himica, 2
719	Rh/CeO2-SiC as a catalyst in partial oxidation of ethanol for hydrogen production. Chinese Journal of Catalysis, 2014, 34, 257-262.	14.0	Ο

720	INTERACTION OF OXYGEN WITH Ag AND Ag-Pd ALLOY BY WORK FUNCTION MEASUREMENT. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1987, 3, 514-519.	4.9	0

#	Article	IF	CITATIONS
721	NOVEL CONCEPTS IN C1 CHEMISTRY. , 2018, , .		0
722	Inorganic Catalysis for Methane Conversion to Chemicals. , 2021, , .		0
723	Tandem catalytic methylation of naphthalene using CO ₂ and H ₂ . Chemical Communications, 2022, 58, 3779-3782.	4.1	0