
G K Ramesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109546/publications.pdf Version: 2024-02-01

C. K. RAMESH

#	Article	IF	CITATIONS
1	Ternary nanofluid with heat source/sink and porous medium effects in stretchable convergent/divergent channel. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2024, 238, 134-143.	1.4	16
2	Dynamics of water conveying SWCNT nanoparticles and swimming microorganisms over a Riga plate subject to heat source/sink. AEJ - Alexandria Engineering Journal, 2022, 61, 2418-2429.	3.4	49
3	Significance of aluminium alloys particle flow through a parallel plates with activation energy and chemical reaction. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6971-6981.	2.0	32
4	Falkner–Skan flow of aqueous magnetite–graphene oxide nanoliquid driven by a wedge. Chinese Journal of Physics, 2022, 77, 733-746.	2.0	7
5	Numerical treatment for Casson liquid flow in a microchannel due to porous medium: A hybrid nanoparticles aspects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 1293-1303.	1.1	2
6	Thermodynamics Examination of Fe3O4-CoFe2O4/Water + EG Nanofluid in a Heated Plate: Crosswise an Stream-wise Aspects. Arabian Journal for Science and Engineering, 2022, 47, 8351-8360.	d _{1.7}	12
7	Performance of water, ethylene glycol, engine oil conveying SWCNT-MWCNT nanoparticles over a cylindrical fin subject to magnetic field and heat generation. International Journal of Modelling and Simulation, 2022, 42, 936-945.	2.3	18
8	Combined impact of Marangoni convection and thermophoretic particle deposition on chemically reactive transport of nanofluid flow over a stretching surface. Nanotechnology Reviews, 2022, 11, 2202-2214.	2.6	6
9	Effect of maximum density and internal heating on the stability of rotating fluid saturated porous layer using LTNE model. Heliyon, 2022, 8, e09620.	1.4	5
10	Hybrid (ND-Co3O4/EG) nanoliquid through a permeable cylinder under homogeneous-heterogeneous reactions and slip effects. Journal of Thermal Analysis and Calorimetry, 2021, 146, 1347-1357.	2.0	26
11	Intrinsic irreversibility of Al ₂ O ₃ –H ₂ O nanofluid Poiseuille flow with variable viscosity and convective cooling. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2042-2063.	1.6	18
12	Assessment of Arrhenius activation energy in stretched flow of nanofluid over a rotating disc. Heat Transfer, 2021, 50, 2807-2828.	1.7	41
13	Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Physica Scripta, 2021, 96, 075210.	1.2	51
14	Significance of increasing Lorentz force and buoyancy force on the dynamics of water conveying SWCNT and MWCNT nanoparticles through a vertical microchannel. Physica Scripta, 2021, 96, 085209.	1.2	2
15	Thermal analysis through cylindrical porous fin having insulated tip: a hybrid nanomaterial approach. Physica Scripta, 2021, 96, 094014.	1.2	5
16	Squeezing flow of Casson hybrid nanofluid between parallel plates with a heat source or sink and thermophoretic particle deposition. Heat Transfer, 2021, 50, 7139-7156.	1.7	37
17	Time-dependent squeezing flow of Casson-micropolar nanofluid with injection/suction and slip effects. International Communications in Heat and Mass Transfer, 2021, 126, 105470.	2.9	32
18	Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1191-1204.	1.9	36

G K RAMESH

#	Article	IF	CITATIONS
19	Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. Journal of Molecular Liquids, 2021, 335, 116103, Computational study of chemical reaction and activation energy on the flow of <mml:math< td=""><td>2.3</td><td>182</td></mml:math<>	2.3	182
20	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si29.svg"> <mml:mrow><mml:mi>F</mml:mi><mml:msub><mml:mi>e</mml:mi><mml:mi>3linebreak="badbreak" linebreakstyle="after">-<mml:mi>G</mml:mi><mml:mi>o</mml:mi><mml:mo< td=""><td>1.1</td><td>1/</td></mml:mo<></mml:mi></mml:msub></mml:mrow>	1.1	1/
21	stretchy="false">/ <mml:mi>w</mml:mi> <mml:mi>a</mml:mi> <mml:mi>t</mml:mi> <mml:mi><mml:mi><mml:mi>e<!--<br-->Dynamics of hybrid nanofluid through a semi spherical porous fin with internal heat generation. Partial Differential Equations in Applied Mathematics, 2021, 4, 100150.</mml:mi></mml:mi></mml:mi>	mml:mi> <mr 1.3</mr 	ml:mi>r19
22	Activation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sink. Chinese Journal of Physics, 2021, 73, 375-390.	2.0	41
23	Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: A modified Buongiorno's model aspects. Chaos, Solitons and Fractals, 2021, 152, 111428.	2.5	47
24	Effects of chemical reaction and activation energy on a Carreau nanoliquid past a permeable surface under zero mass flux conditions. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2020, 234, 47-57.	0.5	3
25	Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction. Physica A: Statistical Mechanics and Its Applications, 2020, 550, 123964.	1.2	32
26	3D flow and heat transfer of micropolar fluid suspended with mixture of nanoparticles (Ag-CuO/H ₂ O) driven by an exponentially stretching surface. Multidiscipline Modeling in Materials and Structures, 2020, 16, 1691-1707.	0.6	8
27	Interaction of Al ₂ O ₃ -Ag and Al ₂ O ₃ -Cu hybrid nanoparticles with water on convectively heated moving material. Multidiscipline Modeling in Materials and Structures, 2020, 16, 1651-1667.	0.6	15
28	Heat transport analysis of aluminum alloy and magnetite graphene oxide through permeable cylinder with heat source/sink. Physica Scripta, 2020, 95, 095203.	1.2	34
29	Thermal Transport of Hybrid Liquid over Thin Needle with Heat Sink/Source and Darcy–Forchheimer Porous Medium Aspects. Arabian Journal for Science and Engineering, 2020, 45, 9569-9578.	1.7	44
30	Bödewadt ï¬,ow and heat transfer of hybrid nanomaterial. International Journal of Ambient Energy, 2020, , 1-9.	1.4	13
31	Magnetized mixed convection secondâ€grade fluid flow adjacent to a lubricated vertical surface. Heat Transfer, 2020, 49, 3958-3978.	1.7	5
32	Keller-box analysis of inclination flow of magnetized Williamson nanofluid. SN Applied Sciences, 2020, 2, 1.	1.5	10
33	Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model. Applied Mathematics and Mechanics (English Edition), 2020, 41, 699-710.	1.9	20
34	Navier's slip condition on time dependent Darcy-Forchheimer nanofluid using spectral relaxation method. Journal of Central South University, 2019, 26, 2000-2010.	1.2	17
35	Influence of shape factor on hybrid nanomaterial in a cross flow direction with viscous dissipation. Physica Scripta, 2019, 94, 105224.	1.2	28
36	Impact of homogeneousâ€heterogeneous reactions in a hybrid nanoliquid flow due to porous medium. Heat Transfer - Asian Research, 2019, 48, 3866-3884.	2.8	9

G K RAMESH

#	Article	IF	CITATIONS
37	Numerical Simulation of Heat Transfer Behavior of Dissimilar AA5052-AA6061 Plates in Fiction Stir Welding: An Experimental Validation. Strojnicky Casopis, 2019, 69, 131-142.	0.3	4
38	Three different hybrid nanometrial performances on rotating disk: a non-Darcy model. Applied Nanoscience (Switzerland), 2019, 9, 179-187.	1.6	28
39	On stretched magnetic flow of Carreau nanofluid with slip effects and nonlinear thermal radiation. Nonlinear Engineering, 2019, 8, 340-349.	1.4	26
40	Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles. Canadian Journal of Physics, 2018, 96, 18-24.	0.4	39
41	Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid with thermal radiation. AEJ - Alexandria Engineering Journal, 2018, 57, 2139-2149.	3.4	79
42	MHD Flow of Dusty Fluid Past a Stretching Sheet with Slip Effect Using Carreau Model. Defect and Diffusion Forum, 2018, 387, 135-144.	0.4	3
43	Darcy-Forchheimer Flow of Casson Nanofluid with Heat Source/Sink: A Three-Dimensional Study. , 2018, , .		1
44	Magnetohydrodynamic nanoliquid due to unsteady contracting cylinder with uniform heat generation/absorption and convective condition. AEJ - Alexandria Engineering Journal, 2018, 57, 3333-3340.	3.4	17
45	Analysis of Melting Heat Transport in a Cross Flow Direction: A Comparative Study. Communications in Theoretical Physics, 2018, 70, 777.	1.1	4
46	Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink. Results in Physics, 2018, 9, 1555-1563.	2.0	63
47	Activation energy and chemical reaction in Maxwell magneto-nanoliquid with passive control of nanoparticle volume fraction. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	0.8	23
48	Double-Diffusive Free Convective Flow of Maxwell Nanofluid Past a Stretching Sheet with Nonlinear Thermal Radiation. Journal of Nanofluids, 2018, 7, 499-508.	1.4	11
49	Three-Dimensional (3D) Rotating Flow of Selenium Nanoparticles Past an Exponentially Stretchable Surface Due to Solar Energy Radiation. Journal of Nanofluids, 2018, 8, 1034-1040.	1.4	5
50	Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation. Thermal Science and Engineering Progress, 2017, 1, 6-14.	1.3	59
51	An electro-magneto-hydrodynamic flow Maxwell nanoliquid past a Riga plate: a numerical study. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39, 4547-4554.	0.8	40
52	Analysis of Heat Transfer Phenomenon in Magnetohydrodynamic Casson Fluid Flow Through Cattaneo–Christov Heat Diffusion Theory. Communications in Theoretical Physics, 2017, 68, 91.	1.1	20
53	Three dimensional MHD flow of couple stress Casson fluid past an unsteady stretching surface with chemical reaction. Results in Physics, 2017, 7, 4104-4110.	2.0	39
54	NON-LINEAR RADIATIVE FLOW OF NANOFLUID PAST A MOVING/STATIONARY RIGA PLATE. Frontiers in Heat and Mass Transfer, 2017, 9, .	0.1	13

G K RAMESH

#	Article	IF	CITATIONS
55	Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles. AEJ - Alexandria Engineering Journal, 2016, 55, 857-865.	3.4	58
56	Boundary layer flow past an inclined stationary/moving flat plate with convective boundary condition. Afrika Matematika, 2016, 27, 87-95.	0.4	23
57	Melting and Radiation Effects on Stagnation Point Jeffrey Fluid Flow Over a Stretching Sheet in the Presence of Nanoparticles. Journal of Nanofluids, 2016, 5, 993-999.	1.4	5
58	Casson Fluid Flow near the Stagnation Point over a Stretching Sheet with Variable Thickness and Radiation. Journal of Applied Fluid Mechanics, 2016, 9, 1115-1022.	0.4	74
59	Numerical Study of the Influence of Heat Source on Stagnation Point Flow towards a Stretching Surface of a Jeffrey Nanoliquid. Journal of Engineering (United States), 2015, 2015, 1-10.	0.5	11
60	Boundary layer flow past a stretching sheet with fluid-particle suspension and convective boundary condition. Heat and Mass Transfer, 2015, 51, 1061-1066.	1.2	26
61	Study on Sakiadis and Blasius flows of Williamson fluid with convective boundary condition. Nonlinear Engineering, 2015, 4, .	1.4	20
62	MHD Flow of Maxwell Fluid Over a Stretching Sheet in the Presence of Nanoparticles, Thermal Radiation and Chemical Reaction: A Numerical Study. Journal of Nanofluids, 2015, 4, 100-106.	1.4	14
63	MHD Stagnation Point Flow of Nanofluid Towards a Stretching Surface with Variable Thickness and Thermal Radiation. Journal of Nanofluids, 2015, 4, 247-253.	1.4	11
64	Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Shams Engineering Journal, 2014, 5, 991-998.	3.5	92
65	Stagnation point flow of a MHD dusty fluid towards a stretching sheet with radiation. Afrika Matematika, 2014, 25, 237-249.	0.4	16
66	Magnetohydrodynamic Flow of a Non-Newtonian Nanofluid Over an Impermeable Surface with Heat Generation/Absorption. Journal of Nanofluids, 2014, 3, 78-84.	1.4	22
67	MHD mixed convection flow of a viscoelastic fluid over an inclined surface with a nonuniform heat source/sink. Canadian Journal of Physics, 2013, 91, 1074-1080.	0.4	26
68	Flow Over a Stretching Sheet in a Dusty Fluid With Radiation Effect. Journal of Heat Transfer, 2013, 135, .	1.2	22
69	Heat Transfer in MHD Dusty Boundary Layer Flow over an Inclined Stretching Sheet with Non-Uniform Heat Source/Sink. Advances in Mathematical Physics, 2012, 2012, 1-13.	0.4	35
70	MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink. International Journal of Heat and Mass Transfer, 2012, 55, 4900-4907.	2.5	56
71	Boundary layer flow and heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink. International Journal of Multiphase Flow, 2011, 37, 977-982.	1.6	66
72	Boundary Layer Flow and Heat Transfer of a Dusty Fluid over a Stretching Vertical Surface. Applied Mathematics, 2011, 02, 475-481.	0.1	20

G K Ramesh

#	Article	IF	CITATIONS
73	Natural Convection in a Non-Uniformly Heated Vertical Annular Cavity. Defect and Diffusion Forum, 0, 377, 189-199.	0.4	22
74	Phenomenon of Radiation and Viscous Dissipation on Casson Nanoliquid Flow Past a Moving Melting Surface. , 0, 11, 33-42.		24
75	Simultaneous Convection of Carreau Fluid with Radiation Past a Convectively Heated Moving Plate. Defect and Diffusion Forum, 0, 389, 60-70.	0.4	5
76	Thermodynamic activity of a ternary nanofluid flow passing through a permeable slipped surface with heat source and sink. Waves in Random and Complex Media, 0, , 1-21.	1.6	34
77	Characteristic of thermophoretic effect and convective thermal conditions on flow of hybrid nanofluid over a moving thin needle. Waves in Random and Complex Media, 0, , 1-23.	1.6	17