Jiping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109495/publications.pdf

Version: 2024-02-01

101543 155660 3,970 129 36 55 citations g-index h-index papers 138 138 138 4472 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosensors and Bioelectronics, 2018, 107, 69-75.	10.1	251
2	3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A. Biosensors and Bioelectronics, 2015, 65, 295-301.	10.1	181
3	Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Analytica Chimica Acta, 2015, 872, 35-45.	5 . 4	142
4	Nanographene-based tyrosinase biosensor for rapid detection of bisphenol A. Biosensors and Bioelectronics, 2012, 35, 193-199.	10.1	135
5	Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples. Journal of Chromatography A, 2014, 1359, 1-7.	3.7	85
6	Highly selective dummy molecularly imprinted polymer as a solid-phase extraction sorbent for five bisphenols in tap and river water. Journal of Chromatography A, 2014, 1343, 33-41.	3.7	79
7	Highly class-selective solid-phase extraction of bisphenols in milk, sediment and human urine samples using well-designed dummy molecularly imprinted polymers. Journal of Chromatography A, 2014, 1360, 9-16.	3.7	72
8	Response Characteristics of Bisphenols on a Metal–Organic Framework-Based Tyrosinase Nanosensor. ACS Applied Materials & Damp; Interfaces, 2016, 8, 16533-16539.	8.0	72
9	Voltammetric sensing of biomolecules at carbon based electrode interfaces: A review. TrAC - Trends in Analytical Chemistry, 2018, 98, 174-189.	11.4	67
10	Advances in sensing and biosensing of bisphenols: A review. Analytica Chimica Acta, 2018, 998, 1-27.	5.4	66
11	Graphdiyne: A new promising member of 2D all-carbon nanomaterial as robust electrochemical enzyme biosensor platform. Carbon, 2020, 156, 568-575.	10.3	64
12	New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. Journal of Chromatography A, 2014, 1337, 133-139.	3.7	62
13	Determination of nine bisphenols in sewage and sludge using dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 2018, 1552, 10-16.	3.7	59
14	A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs). Environmental Pollution, 2018, 234, 572-580.	7.5	58
15	Dendrimer-functionalized mesoporous silica as a reversed-phase/anion-exchange mixed-mode sorbent for solid phase extraction of acid drugs in human urine. Journal of Chromatography A, 2015, 1392, 28-36.	3.7	57
16	Dispersion of Short- and Medium-Chain Chlorinated Paraffins (CPs) from a CP Production Plant to the Surrounding Surface Soils and Coniferous Leaves. Environmental Science & E	10.0	57
17	Developmental and metabolic responses of zebrafish (Danio rerio) embryos and larvae to short-chain chlorinated paraffins (SCCPs) exposure. Science of the Total Environment, 2018, 622-623, 214-221.	8.0	56
18	Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea, China. Marine Pollution Bulletin, 2014, 79, 299-304.	5.0	53

#	Article	IF	CITATIONS
19	A Membraneâ€Supported Bifunctional Poly(amidoximeâ€ethyleneimine) Network for Enhanced Uranium Extraction from Seawater and Wastewater. Journal of Hazardous Materials, 2022, 425, 127995.	12.4	53
20	Electrochemical biosensing platform based on amino acid ionic liquid functionalized graphene for ultrasensitive biosensing applications. Biosensors and Bioelectronics, 2014, 62, 134-139.	10.1	51
21	Comparing the disrupting effects of short-, medium- and long-chain chlorinated Paraffins on cell viability and metabolism. Science of the Total Environment, 2019, 685, 297-307.	8.0	51
22	Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats. Science of the Total Environment, 2018, 625, 657-666.	8.0	49
23	Palladium-catalyzed, copper-mediated construction of benzene rings from the reactions of indoles with in situ generated enones. Organic Chemistry Frontiers, 2014, 1, 707-711.	4.5	48
24	Novel sponge-like molecularly imprinted mesoporous silica material for selective isolation of bisphenol A and its analogues from sediment extracts. Analytica Chimica Acta, 2015, 853, 311-319.	5.4	48
25	Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat. Environment International, 2019, 133, 105231.	10.0	48
26	Trichloroisocyanuric Acid: A Convenient Oxidation Reagent for Phase-Transfer Catalytic Epoxidation of Enones under Non-Aqueous Conditions. Advanced Synthesis and Catalysis, 2004, 346, 691-696.	4.3	46
27	A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. Journal of Materials Chemistry, 2009, 19, 4707.	6.7	45
28	Multiresidue determination and potential risks of emerging pesticides in aquatic products from Northeast China by LC–MS/MS. Journal of Environmental Sciences, 2018, 63, 116-125.	6.1	44
29	Diurnal variations of atmospheric polycyclic aromatic hydrocarbons (PAHs) during three sequent winter haze episodes in Beijing, China. Science of the Total Environment, 2018, 625, 1486-1493.	8.0	43
30	Salt-assisted dispersive liquid–liquid microextraction coupled with programmed temperature vaporization gas chromatography–mass spectrometry for the determination of haloacetonitriles in drinking water. Journal of Chromatography A, 2014, 1358, 14-19.	3.7	42
31	Robust Single-Molecule Enzyme Nanocapsules for Biosensing with Significantly Improved Biosensor Stability. Analytical Chemistry, 2020, 92, 5830-5837.	6.5	41
32	Release and Transformation of BTBPE During the Thermal Treatment of Flame Retardant ABS Plastics. Environmental Science & Envi	10.0	40
33	Toxicokinetics of short-chain chlorinated paraffins in Sprague–Dawley rats following single oral administration. Chemosphere, 2016, 145, 106-111.	8.2	39
34	Partitioning and removal behaviors of PCDD/Fs, PCBs and PCNs in a modern municipal solid waste incineration system. Science of the Total Environment, 2020, 735, 139134.	8.0	39
35	New Insights into the Cytotoxic Mechanism of Hexabromocyclododecane from a Metabolomic Approach. Environmental Science & Envir	10.0	38
36	Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples. Talanta, 2019, 196, 47-53.	5.5	38

#	Article	IF	CITATIONS
37	Underwater suspended bifunctionalized polyethyleneimine-based sponge for selective removal of anionic pollutants from aqueous solution. Journal of Hazardous Materials, 2021, 412, 125284.	12.4	38
38	Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta, 2019, 203, 112-121.	5.5	37
39	Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 2016, 50, 3746-3753.	10.0	36
40	Controlled Manipulation of Metal–Organic Framework Layers to Nanometer Precision Inside Large Mesochannels of Ordered Mesoporous Silica for Enhanced Removal of Bisphenol A from Water. ACS Applied Materials & District Precision Inside Large (1) A 11, 4328-4337.	8.0	36
41	Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo- p -dioxin/dibenzofuran in the soils of Guiyu, China. Environmental Pollution, 2017, 228, 61-71.	7.5	35
42	Release and Gas-Particle Partitioning Behaviors of Short-Chain Chlorinated Paraffins (SCCPs) During the Thermal Treatment of Polyvinyl Chloride Flooring. Environmental Science & Environmental Scienc	10.0	35
43	Molecular characterization of dissolved organic matters in winter atmospheric fine particulate matters (PM2.5) from a coastal city of northeast China. Science of the Total Environment, 2019, 689, 312-321.	8.0	35
44	Tyrosinase nanocapsule based nano-biosensor for ultrasensitive and rapid detection of bisphenol A with excellent stability in different application scenarios. Biosensors and Bioelectronics, 2020, 165, 112407.	10.1	35
45	Hazy Weather-Induced Variation in Environmental Behavior of PCDD/Fs and PBDEs in Winter Atmosphere of A North China Megacity. Environmental Science &	10.0	34
46	Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China. Environmental Pollution, 2016, 216, 893-901.	7.5	33
47	Bioaccumulation and human health implications of essential and toxic metals in freshwater products of Northeast China. Science of the Total Environment, 2019, 673, 768-776.	8.0	33
48	Validation of a HRGC–ECNI/LRMS method to monitor short-chain chlorinated paraffins in human plasma. Journal of Environmental Sciences, 2019, 75, 289-295.	6.1	33
49	Nitrogen-Doped Graphdiyne as a Robust Electrochemical Biosensing Platform for Ultrasensitive Detection of Environmental Pollutants. Analytical Chemistry, 2021, 93, 8656-8662.	6.5	33
50	A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymers, 2018, 10, 1150.	4.5	31
51	Spatial variation of PCDD/F and PCB emissions and their composition profiles in stack flue gas from the typical cement plants in China. Chemosphere, 2018, 195, 491-497.	8.2	30
52	Bioaccumulation and human health risks of OCPs and PCBs in freshwater products of Northeast China. Environmental Pollution, 2018, 242, 1527-1534.	7.5	30
53	Short-chain chlorinated paraffins (SCCPs) disrupt hepatic fatty acid metabolism in liver of male rat via interacting with peroxisome proliferator-activated receptor α (PPARα). Ecotoxicology and Environmental Safety, 2019, 181, 164-171.	6.0	30
54	Multifunctionalized mesoporous silica as an efficient reversed-phase/anion exchange mixed-mode sorbent for solid-phase extraction of four acidic nonsteroidal anti-inflammatory drugs in environmental water samples. Journal of Chromatography A, 2017, 1527, 10-17.	3.7	29

#	Article	IF	CITATIONS
55	High performance solid-phase extraction cleanup method coupled with gas chromatography-triple quadrupole mass spectrometry for analysis of polychlorinated naphthalenes and dioxin-like polychlorinated biphenyls in complex samples. Journal of Chromatography A, 2016, 1448, 1-8.	3.7	28
56	Amino Acid Ionic Liquid Modified Mesoporous Carbon: A Tailorâ€made Nanostructure Biosensing Platform. ChemSusChem, 2012, 5, 1918-1925.	6.8	27
57	Gas-Particle Partitioning of PAHs In The Urban Air of Dalian, China: Measurements and Assessments. Polycyclic Aromatic Compounds, 2013, 33, 31-51.	2.6	26
58	Occurrence, distribution and source apportionment of polychlorinated naphthalenes (PCNs) in sediments and soils from the Liaohe River Basin, China. Environmental Pollution, 2016, 211, 226-232.	7.5	25
59	Multi-omics analysis to reveal disorders of cell metabolism and integrin signaling pathways induced by PM2.5. Journal of Hazardous Materials, 2022, 424, 127573.	12.4	25
60	Preparation of dummyâ€imprinted polymers by Pickering emulsion polymerization for the selective determination of seven bisphenols from sediment samples. Journal of Separation Science, 2016, 39, 2188-2195.	2.5	24
61	Palladiumâ€Catalyzed Oxidative Heckâ€Type Allylation of β,βâ€Disubstituted Enones with Allyl Carbonates. Advanced Synthesis and Catalysis, 2014, 356, 2097-2102.	4.3	23
62	Palladium atalyzed Oxidative Cross oupling of α yanoketene Dithioacetals with Olefins. Chemistry - A European Journal, 2015, 21, 14085-14094.	3.3	23
63	Solid-phase extraction based on a molecularly imprinted polymer for the selective determination of four benzophenones in tap and river water. Journal of Separation Science, 2015, 38, 3412-3420.	2.5	22
64	Occurrence and bioaccumulation of polybrominated diphenyl ethers in sediments and paddy ecosystems of Liaohe River Basin, northeast China. Journal of Environmental Sciences, 2016, 43, 250-256.	6.1	22
65	Low-temperature catalytic degradation of chlorinated aromatic hydrocarbons over bimetallic Ce-Zr/UiO-66 catalysts. Chemical Engineering Journal, 2021, 414, 128782.	12.7	22
66	Direct Electrochemical Tyrosinase Biosensor based on Mesoporous Carbon and Co ₃ O ₄ Nanorods for the Rapid Detection of Phenolic Pollutants. ChemElectroChem, 2014, 1, 808-816.	3.4	21
67	Polycyclic aromatic hydrocarbon concentrations, compositions, sources, and associated carcinogenic risks to humans in farmland soils and riverine sediments from Guiyu, China. Journal of Environmental Sciences, 2016, 48, 102-111.	6.1	21
68	Hexabromocyclododecane and tetrabromobisphenol A in sediments and paddy soils from Liaohe River Basin, China: Levels, distribution and mass inventory. Journal of Environmental Sciences, 2016, 48, 209-217.	6.1	21
69	Controllable growth of ZIF-8 layers with nanometer-level precision on SiO2 nano-powders via liquid phase epitaxy stepwise growth approach. Microporous and Mesoporous Materials, 2018, 268, 268-275.	4.4	21
70	Monitoring of PAHs Profiles in the Urban Air of Dalian, China with Active High-volume Sampler and Semipermeable Membrane Devices. Polycyclic Aromatic Compounds, 2013, 33, 265-288.	2.6	20
71	Irrigation-induced pollution of organochlorine pesticides and polychlorinated biphenyls in paddy field ecosystem of Liaohe River Plain, China. Science Bulletin, 2013, 58, 1751-1759.	1.7	20
72	Hyperbranched mixed-mode anion-exchange polymeric sorbent for highly selective extraction of nine acidic non-steroidal anti-inflammatory drugs from human urine. Talanta, 2018, 190, 15-22.	5 . 5	20

#	Article	IF	Citations
73	Occurrence, accumulation, and health risks of heavy metals in Chinese market baskets. Science of the Total Environment, 2022, 829, 154597.	8.0	20
74	Glucosinolate Profiles of Arabidopsis thaliana in Response to Cadmium Exposure. Water, Air, and Soil Pollution, 2009, 200, 109-117.	2.4	19
75	Phenyltrichlorosilane-functionalized magnesium oxide microspheres: Preparation, characterization and application for the selective extraction of dioxin-like polycyclic aromatic hydrocarbons in soils with matrix solid-phase dispersion. Analytica Chimica Acta, 2017, 956, 14-23.	5.4	19
76	Residual levels and health risk assessment of rare earth elements in Chinese resident diet: A market-based investigation. Science of the Total Environment, 2022, 828, 154119.	8.0	19
77	Ammonium hydroxide enhancing electrospray response and boosting sensitivity of bisphenol A and its analogs. Talanta, 2018, 182, 590-594.	5.5	18
78	Quantification of Cl-PAHs and their parent compounds in fish by improved ASE method and stable isotope dilution GC-MS. Ecotoxicology and Environmental Safety, 2019, 186, 109775.	6.0	18
79	Electrophilic Chlorination of Naphthalene in Combustion Flue Gas. Environmental Science & Emp; Technology, 2019, 53, 5741-5749.	10.0	18
80	Sources and health risks of PM2.5-bound polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in a North China rural area. Journal of Environmental Sciences, 2020, 95, 240-247.	6.1	17
81	Concentrations and inhalation risk assessment of short-chain polychlorinated paraffins in the urban air of Dalian, China. Environmental Science and Pollution Research, 2017, 24, 21203-21212.	5.3	16
82	Simultaneous determination of chlorinated aromatic hydrocarbons in fly ashes discharged from industrial thermal processes. Analytical Methods, 2017, 9, 5198-5203.	2.7	16
83	Gas chromatography–triple quadrupole mass spectrometry for the determination of atmospheric polychlorinated naphthalenes. Journal of Hazardous Materials, 2014, 280, 111-117.	12.4	15
84	Preparation of a reversed-phase/anion-exchange mixed-mode spherical sorbent by Pickering emulsion polymerization for highly selective solid-phase extraction of acidic pharmaceuticals from wastewater. Journal of Chromatography A, 2017, 1521, 1-9.	3.7	15
85	Levels and fingerprints of chlorinated aromatic hydrocarbons in fly ashes from the typical industrial thermal processes: Implication for the co-formation mechanism. Chemosphere, 2019, 224, 298-305.	8.2	15
86	Monitoring gas- and particulate-phase short-chain polychlorinated paraffins in the urban air of Dalian by a self-developed passive sampler. Journal of Environmental Sciences, 2019, 80, 287-295.	6.1	15
87	Ultrathin graphdiyne nanosheets confining Cu quantum dots as robust electrocatalyst for biosensing featuring remarkably enhanced activity and stability. Biosensors and Bioelectronics, 2022, 205, 114111.	10.1	15
88	Extreme Exposure Levels of PCDD/Fs Inhaled from Biomass Burning Activity for Cooking in Typical Rural Households. Environmental Science & Environmenta	10.0	14
89	Levels and patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in foodstuffs of animal origin from Chinese markets and implications of dietary exposure. Environmental Pollution, 2021, 273, 116344.	7. 5	13
90	Effect of short-chain chlorinated paraffins on metabolic profiling of male SD rats. Science of the Total Environment, 2021, 750, 141404.	8.0	12

#	Article	IF	Citations
91	Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. Science of the Total Environment, 2021, 772, 144957.	8.0	12
92	Accumulation characteristics and estimated dietary intakes of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and polychlorinated biphenyls in plant-origin foodstuffs from Chinese markets. Science of the Total Environment, 2021, 775, 145830.	8.0	12
93	Tunable BrÃ, nsted Acidityâ€Dependent Alkylation and Alkenylation of Indoles. Advanced Synthesis and Catalysis, 2014, 356, 3871-3880.	4.3	11
94	BrÃ,nsted Acidâ€Promoted Cascade Alkylation/Cyclization of Pyrroles with ⟨i>N⟨ i>,⟨i>N⟨ i>â€Dimethylaminomethyleneglutaconic Acid Dinitrile: A Concise Route to Cyclopenta[⟨i>b⟨ i>]pyrroles. Advanced Synthesis and Catalysis, 2015, 357, 3353-3358.	4.3	11
95	Brønsted Acidâ€Mediated Annulation of αâ€Oxo Ketene Dithioacetals with Pyrroles: Efficient Synthesis of Structurally Diverse Cyclopenta[<i>b</i>)pyrroles. Chemistry - A European Journal, 2015, 21, 9323-9327.	3.3	11
96	Effects of harvesting and extraction methods on metabolite recovery from adherently growing mammalian cells. Analytical Methods, 2020, 12, 2491-2498.	2.7	11
97	The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter. Environmental Pollution, 2021, 272, 115922.	7.5	11
98	Concentrations and gas-particle partitioning of PCDD/Fs in the urban air of Dalian, China. Science Bulletin, 2012, 57, 3442-3451.	1.7	10
99	Internal exposure of Chinese children from a typical coastal city to bisphenols and possible association with thyroid hormone levels. Environment International, 2021, 156, 106759.	10.0	10
100	Synergistic effect of mixed Cu and Fe oxides and chlorides on electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran. Science of the Total Environment, 2020, 721, 137563.	8.0	9
101	Suppressing the formation of chlorinated aromatics by inhibitor sodium thiocyanate in solid waste incineration process. Science of the Total Environment, 2021, 798, 149154.	8.0	8
102	Transcriptomics and metabolomics analyses provide insights into the difference in toxicity of benzo[a]pyrene and 6-chlorobenzo[a]pyrene to human hepatic cells. Science of the Total Environment, 2022, 812, 152242.	8.0	8
103	Mass balance and elimination mechanism of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during the kraft pulping process. Journal of Hazardous Materials, 2020, 398, 122819.	12.4	7
104	An electrochemical deoxyribonucleic acid biosensor for rapid genotoxicity screening of chemicals. Analytical Methods, 2015, 7, 3347-3352.	2.7	6
105	Levels and gas-particle partitioning of hexabromocyclododecanes in the urban air of Dalian, China. Environmental Science and Pollution Research, 2018, 25, 27514-27523.	5.3	6
106	Polychlorinated dibenzo-p-dioxin and dibenzofuran precursors and formation mechanisms during non-woodpulp chlorine bleaching process. Chemosphere, 2018, 211, 1-9.	8.2	6
107	Mechanistic aspects of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) formation from chlorine bleaching of non-wood pulp. Journal of Hazardous Materials, 2020, 386, 121652.	12.4	6
108	Inhibition Effect and Mechanism of Thiourea on Electrophilic Chlorination of Aromatics in Combustion Flue Gas. Environmental Science & Eamp; Technology, 2021, 55, 700-708.	10.0	6

#	Article	IF	Citations
109	Molecular chemodiversity of water-soluble organic matter in atmospheric particulate matter and their associations with atmospheric conditions. Science of the Total Environment, 2022, 809, 151171.	8.0	6
110	Accumulation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in human breast milk from a seaside city of North China. Environmental Pollution, 2022, 297, 118794.	7.5	6
111	Pollution level and distribution of PCDD/PCDF congeners between vapor phase and particulate phase in winter air of Dalian, China. Journal of Environmental Sciences, 2011, 23, S36-S39.	6.1	5
112	Electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran over composite copper and iron chlorides and oxides in combustion flue gas. Chemosphere, 2020, 256, 127065.	8.2	5
113	FT-ICR mass spectrometry for molecular characterization of water-insoluble organic compounds in winter atmospheric fine particulate matters. Journal of Environmental Sciences, 2022, 111, 51-60.	6.1	5
114	Characteristics of PAHs, PCDD/Fs, PCBs and PCNs in atmospheric fine particulate matter in Dalian, China. Chemosphere, 2022, 288, 132488.	8.2	5
115	The cytotoxicity of PM2.5 and its effect on the secretome of normal human bronchial epithelial cells. Environmental Science and Pollution Research, 2022, 29, 75966-75977.	5.3	5
116	Using HPLC Retention Parameters to Estimate Fish Bioconcentration Factors of Organic Compounds. Journal of Liquid Chromatography and Related Technologies, 2004, 27, 1861-1873.	1.0	4
117	Selective separation of polychlorinated naphthalene (PCNs), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) in soil matrices. Science Bulletin, 2013, 58, 500-506.	1.7	4
118	Simultaneous determination of three alternative flame retardants (dechlorane plus,) Tj ETQq0 0 0 rgBT /Overlock chromatography–high resolution mass spectrometry. Talanta, 2015, 144, 1014-1020.	10 Tf 50 5.5	387 Td (1,2-b 4
119	3-Aminophenylboronic acid-mediated aggregation of gold nanoparticles for colorimetric sensing of iohexol in environmental and biological samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120004.	3.9	4
120	Thiolated Polyethyleneimine-Based Polymer Sponge for Selective Removal of Hg ²⁺ from Aqueous Solution. ACS Omega, 2021, 6, 31955-31963.	3.5	4
121	Facile Synthesis of Mixed-Mode Weak Anion-Exchange Microspheres via One-Step Pickering Emulsion Polymerization for Efficient Simultaneous Extraction of Strongly and Weakly Acidic Drugs from Reservoir Water. Polymers, 2020, 12, 2089.	4.5	3
122	The dose effect of dansyl chloride on the derivative products of bisphenols and its application for the determination of bisphenols in human serum by highâ€performance liquid chromatography–tandem mass spectrometry. Journal of Separation Science, 2021, 44, 3052-3060.	2.5	3
123	Magnetic magnesium oxide composites for rapid removal of polycyclic aromatic hydrocarbons and cadmium ions from water. Environmental Chemistry, 2020, 17, 479.	1.5	3
124	Insights into the hepatotoxicity of pyrene and 1-chloropyrene using an integrated approach of metabolomics and transcriptomics. Science of the Total Environment, 2022, 829, 154637.	8.0	2
125	Analysis of the volatile oil from the stem of Acanthopanax Senticosus (Rupr. et Maxim.) harms with several hyphenated methods of chromatography. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 193-198.	0.4	1
126	A cleanup method of serum extracts with molecular sieves as SPE sorbents for the analysis of polybrominated diphenyl ethers. Journal of Separation Science, 2022, , .	2.5	1

#	Article	IF	CITATIONS
127	Notice of Retraction: Pollution Level and Distribution of PCBs Congeners between Vapor Phase and Particulate Phase in Winter Air of Dalian, China. , 2011, , .		O
128	Response to Comment on salt-assisted dispersion effects in dispersive liqud-liquid microextraction of haloacetonitriles. Journal of Chromatography A, 2018, 1551, 76.	3.7	0
129	Effect of urea on chlorinated aromatics formation mediated by copper and iron species in combustion flue gas. Chemosphere, 2021, 280, 130963.	8.2	0