
Kristina A Malsagova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Silicon-On-Insulator―Based Nanosensor for the Revelation of MicroRNA Markers of Autism. Genes, 2022, 13, 199.	1.0	3
2	Molecular Dynamics Study of Citrullinated Proteins Associated with the Development of Rheumatoid Arthritis. Proteomes, 2022, 10, 8.	1.7	4
3	Radiothermometric Study of the Effect of Amino Acid Mutation on the Characteristics of the Enzymatic System. Diagnostics, 2022, 12, 943.	1.3	1
4	Mass Spectrometric Identification of Proteins Enhanced by the Atomic Force Microscopy Immobilization Surface. International Journal of Molecular Sciences, 2021, 22, 431.	1.8	3
5	Optical Monitoring of the Production Quality of Si-Nanoribbon Chips Intended for the Detection of ASD-Associated Oligonucleotides. Micromachines, 2021, 12, 147.	1.4	5
6	Raman Spectroscopy-Based Quality Control of "Silicon-On-Insulator―Nanowire Chips for the Detection of Brain Cancer-Associated MicroRNA in Plasma. Sensors, 2021, 21, 1333.	2.1	5
7	Detection of Influenza Virus Using a SOI-Nanoribbon Chip, Based on an N-Type Field-Effect Transistor. Biosensors, 2021, 11, 119.	2.3	6
8	Diversity of Plant Sterols Metabolism: The Impact on Human Health, Sport, and Accumulation of Contaminating Sterols. Nutrients, 2021, 13, 1623.	1.7	15
9	Molecular Portrait of an Athlete. Diagnostics, 2021, 11, 1095.	1.3	6
10	Micro-Raman Characterization of Structural Features of High-k Stack Layer of SOI Nanowire Chip, Designed to Detect Circular RNA Associated with the Development of Glioma. Molecules, 2021, 26, 3715.	1.7	6
11	The Concept of Folic Acid in Health and Disease. Molecules, 2021, 26, 3731.	1.7	76
12	Use of Silicon Nanowire Sensors for Early Cancer Diagnosis. Molecules, 2021, 26, 3734.	1.7	16
13	Nanoribbon-Based Electronic Detection of a Glioma-Associated Circular miRNA. Biosensors, 2021, 11, 237.	2.3	11
14	Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma. Chemosensors, 2021, 9, 222.	1.8	4
15	Food Intolerance: The Role of Histamine. Nutrients, 2021, 13, 3207.	1.7	35
16	Proteomic and molecular dynamic investigations of PTM-induced structural fluctuations in breast and ovarian cancer. Scientific Reports, 2021, 11, 19318.	1.6	7
17	Convolutional neural network in proteomics and metabolomics for determination of comorbidity between cancer and schizophrenia. Journal of Biomedical Informatics, 2021, 122, 103890.	2.5	10
18	Sports Nutrition: Diets, Selection Factors, Recommendations. Nutrients, 2021, 13, 3771.	1.7	36

KRISTINA A MALSAGOVA

#	Article	IF	CITATIONS
19	Changes in Protein Structural Motifs upon Post-Translational Modification in Kidney Cancer. Diagnostics, 2021, 11, 1836.	1.3	2
20	Current Approaches in Supersecondary Structures Investigation. International Journal of Molecular Sciences, 2021, 22, 11879.	1.8	6
21	Determination of Specific IgG to Identify Possible Food Intolerance in Athletes Using ELISA. Data, 2021, 6, 122.	1.2	0
22	Nanoribbon Biosensor in the Detection of miRNAs Associated with Colorectal Cancer. Micromachines, 2021, 12, 1581.	1.4	5
23	Managing of Unassigned Mass Spectrometric Data by Neural Network for Cancer Phenotypes Classification. Journal of Personalized Medicine, 2021, 11, 1288.	1.1	3
24	Super Secondary Structures of Proteins with Post-Translational Modifications in Colon Cancer. Molecules, 2020, 25, 3144.	1.7	13
25	Stability of Plasma Protein Composition in Dried Blood Spot during Storage. Processes, 2020, 8, 1500.	1.3	3
26	Biobanks—A Platform for Scientific and Biomedical Research. Diagnostics, 2020, 10, 485.	1.3	42
27	Nanowire Aptamer-Sensitized Biosensor Chips with Gas Plasma-Treated Surface for the Detection of Hepatitis C Virus Core Antigen. Coatings, 2020, 10, 753.	1.2	25
28	Highly Sensitive Detection of CA 125 Protein with the Use of an n-Type Nanowire Biosensor. Biosensors, 2020, 10, 210.	2.3	12
29	Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization. Pharmaceutics, 2020, 12, 1240.	2.0	20
30	SOI-Nanowire Biosensor for the Detection of Glioma-Associated miRNAs in Plasma. Chemosensors, 2020, 8, 95.	1.8	15
31	Dried Blood Spot in Laboratory: Directions and Prospects. Diagnostics, 2020, 10, 248.	1.3	54
32	Proteome data of serum samples from patients with schizophrenia. Data in Brief, 2020, 29, 105338.	0.5	1
33	Revelation of Proteomic Indicators for Colorectal Cancer in Initial Stages of Development. Molecules, 2020, 25, 619.	1.7	31
34	The Registration of a Biomaser-Like Effect in an Enzyme System with an RTM Sensor. Journal of Sensors, 2019, 2019, 1-11.	0.6	7
35	Detection of Marker miRNAs, Associated with Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. Sensors, 2019, 19, 5248.	2.1	19
36	AFM-MS for Protein Analysis of Plasma Samples of Patients with Ovarian Cancer. Bulletin of the Lebedev Physics Institute, 2019, 46, 267-271.	0.1	0

KRISTINA A MALSAGOVA

#	Article	IF	CITATIONS
37	Yin-yang genes in cancer, schizophrenia, and autism spectrum disorders. Voprosy Prakticheskoi Pediatrii, 2019, 14, 37-46.	0.0	0
38	Genome editing: current development trends. Voprosy Prakticheskoi Pediatrii, 2019, 14, 13-21.	0.0	0
39	Detection of marker miRNAs in plasma using SOI-NW biosensor. Sensors and Actuators B: Chemical, 2018, 261, 566-571.	4.0	31
40	Ultrasensitive Detection of 2,4-Dinitrophenol Using Nanowire Biosensor. Journal of Nanotechnology, 2018, 2018, 1-6.	1.5	11
41	Micro-Raman Spectroscopy for Monitoring of Deposition Quality of High-k Stack Protective Layer onto Nanowire FET Chips for Highly Sensitive miRNA Detection. Biosensors, 2018, 8, 72.	2.3	13
42	Ultrasensitive nanowire-based detection of HCVcoreAg in the serum using a microwave generator. Analytical Methods, 2018, 10, 2740-2749.	1.3	11
43	Highly sensitive protein detection by biospecific <scp>AFM</scp> â€based fishing with pulsed electrical stimulation. FEBS Open Bio, 2017, 7, 1186-1195.	1.0	13
44	Monitoring of microwave emission of HRP system during the enzyme functioning. Biochemistry and Biophysics Reports, 2016, 7, 20-25.	0.7	11
45	Detection of microwave radiation of cytochrome CYP102 A1 solution during the enzyme reaction. Biochemistry and Biophysics Reports, 2016, 5, 285-289.	0.7	7
46	AFM-based technologies as the way towards the reverse Avogadro number. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2015, 9, 244-257.	0.2	13
47	AFM-based protein fishing in the pulsed electric field. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2015, 9, 121-129.	0.2	10
48	A SOI-nanowire biosensor for the multiple detection of D-NFATc1 protein in the serum. Analytical Methods, 2015, 7, 8078-8085.	1.3	27
49	SOI-nanowire biosensor for detection of D-NFATc1 protein. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2014, 8, 220-225.	0.2	7
50	Highly sensitive protein detection by combination of atomic force microscopy fishing with charge generation and mass spectrometry analysis. FEBS Journal, 2014, 281, 4705-4717.	2.2	20
51	SOI nanowire for the high-sensitive detection of HBsAg and α-fetoprotein. Lab on A Chip, 2012, 12, 5104.	3.1	55