Kouros Nouri-Mahdavi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2109359/publications.pdf

Version: 2024-02-01

106 papers 3,989 citations

172457 29 h-index 56 g-index

109 all docs

109 docs citations

109 times ranked 2390 citing authors

#	Article	IF	CITATIONS
1	Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology, 2004, 111, 1627-1635.	5.2	629
2	Trabeculectomy with Mitomycin C. Ophthalmology, 2006, 113, 930-936.	5.2	172
3	Identifying early glaucoma with optical coherence tomography. American Journal of Ophthalmology, 2004, 137, 228-235.	3.3	157
4	Outcomes of Trabeculectomy for Primary Open-angle Glaucoma. Ophthalmology, 1995, 102, 1760-1769.	5.2	146
5	Macular Ganglion Cell/Inner Plexiform Layer Measurements by Spectral Domain Optical Coherence Tomography for Detection of Early Glaucoma and Comparison to Retinal Nerve Fiber Layer Measurements. American Journal of Ophthalmology, 2013, 156, 1297-1307.e2.	3.3	132
6	Optic Disk and Nerve Fiber Layer Imaging to Detect Glaucoma. American Journal of Ophthalmology, 2007, 144, 724-732.	3.3	114
7	Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography. PLoS ONE, 2018, 13, e0205773.	2.5	111
8	Trabeculectomy With Mitomycin C in Pseudophakic Patients With Open-angle Glaucoma: Outcomes and Risk Factors For Failure. American Journal of Ophthalmology, 2006, 141, 652-659.	3.3	103
9	Comparison of Retinal Nerve Fiber Layer Thickness and Optic Disk Algorithms with Optical Coherence Tomography to Detect Glaucoma. American Journal of Ophthalmology, 2006, 141, 105-115.e1.	3.3	96
10	A Method to Measure and Predict Rates of Regional Visual Field Decay in Glaucoma. Investigative Ophthalmology and Visual Science, 2011, 52, 4765-4773.	3.3	80
11	Trabeculectomy Can Improve Long-Term Visual Function in Glaucoma. Ophthalmology, 2016, 123, 117-128.	5.2	80
12	Comparison of Methods to Detect Visual Field Progression in Glaucoma. Ophthalmology, 1997, 104, 1228-1236.	5.2	74
13	Prediction of Visual Field Progression in Glaucoma. , 2004, 45, 4346.		72
14	Visual field changes after cataract extraction: The AGIS experience. American Journal of Ophthalmology, 2004, 138, 1022-1028.	3.3	70
15	Long-Term Bleb-Related Infections After Trabeculectomy: Incidence, Risk Factors, andÂInfluence of Bleb Revision. American Journal of Ophthalmology, 2015, 159, 1082-1091.	3.3	70
16	Spectral-Domain OCT: Helping the Clinician Diagnose Glaucoma. Ophthalmology, 2018, 125, 1817-1827.	5.2	70
17	Pointwise Linear Regression for Evaluation of Visual Field Outcomes and Comparison With the Advanced Glaucoma Intervention Study Methods. JAMA Ophthalmology, 2005, 123, 193.	2.4	67
18	Measurement of Optic Disc Size and Rim Area with Spectral-Domain OCT and Scanning Laser Ophthalmoscopy., 2012, 53, 4519.		67

#	Article	IF	Citations
19	Structure–Function Relationships between Spectral-Domain OCT and Standard Achromatic Perimetry., 2012, 53, 2740.		66
20	Comparison of Methods to Predict Visual Field Progression in Glaucoma. JAMA Ophthalmology, 2007, 125, 1176.	2.4	65
21	Macular SD-OCT Outcome Measures: Comparison of Local Structure-Function Relationships and Dynamic Range. , 2016, 57, 4815.		53
22	Magnetic Resonance Imaging of Optic Nerve Traction During Adduction in Primary Open-Angle Glaucoma With Normal Intraocular Pressure., 2017, 58, 4114.		52
23	Detection of Early Glaucoma With Optical Coherence Tomography (StratusOCT). Journal of Glaucoma, 2008, 17, 183-188.	1.6	51
24	Risk Factors for Fast Visual Field Progression in Glaucoma. American Journal of Ophthalmology, 2019, 207, 268-278.	3.3	50
25	The relationship between central visual field sensitivity and macular ganglion cell/inner plexiform layer thickness in glaucoma. British Journal of Ophthalmology, 2017, 101, 1052-1058.	3.9	48
26	Longitudinal Macular Structure–Function Relationships in Glaucoma. Ophthalmology, 2020, 127, 888-900.	5.2	47
27	Baseline Prognostic Factors Predict Rapid Visual Field Deterioration in Glaucoma. , 2014, 55, 2228.		46
28	Influence of the Disc–Fovea Angle on Limits of RNFL Variability and Glaucoma Discrimination. , 2014, 55, 7332.		46
29	Macular imaging with optical coherence tomography in glaucoma. Survey of Ophthalmology, 2020, 65, 597-638.	4.0	45
30	Comparison of Methods to Detect and Measure Glaucomatous Visual Field Progression. Translational Vision Science and Technology, 2019, 8, 2.	2.2	41
31	Influence of Visual Field Testing Frequency on Detection of Glaucoma Progression With Trend Analyses. JAMA Ophthalmology, 2011, 129, 1521.	2.4	40
32	Long-term Outcomes of Resident- Versus Attending-Performed Primary Trabeculectomy With Mitomycin C in a United States Residency Program. American Journal of Ophthalmology, 2014, 157, 1190-1201.	3.3	39
33	Influence of Correction of Ocular Magnification on Spectral-Domain OCT Retinal Nerve Fiber Layer Measurement Variability and Performance. , 2014, 55, 3439.		38
34	Models of Glaucomatous Visual Field Loss. Investigative Ophthalmology and Visual Science, 2014, 55, 7881-7887.	3.3	37
35	Outcomes of Laser Suture Lysis After Initial Trabeculectomy With Adjunctive Mitomycin C. Journal of Glaucoma, 2006, 15, 60-67.	1.6	33
36	Association of Structural and Functional Measures With Contrast Sensitivity in Glaucoma. American Journal of Ophthalmology, 2017, 178, 129-139.	3.3	32

#	Article	IF	CITATIONS
37	Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1593-1616.	1.9	31
38	Validation of Point-Wise Exponential Regression to Measure the Decay Rates of Glaucomatous Visual Fields., 2012, 53, 5403.		31
39	Pointwise Rates of Visual Field Progression Cluster according to Retinal Nerve Fiber Layer Bundles. , 2012, 53, 2390.		31
40	Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma. American Journal of Ophthalmology, 2021, 226, 172-181.	3.3	31
41	EFFECT OF INTRAVITREAL BEVACIZUMAB ON RETROBULBAR BLOOD FLOW IN INJECTED AND UNINJECTED FELLOW EYES OF PATIENTS WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION. Retina, 2012, 32, 967-971.	1.7	30
42	Local Variability of Macular Thickness Measurements With SD-OCT and Influencing Factors. Translational Vision Science and Technology, 2016, 5, 5.	2.2	30
43	Pointwise Linear Regression Analysis for Detection of Visual Field Progression with Absolute versus Corrected Threshold Sensitivities., 2006, 47, 2896.		26
44	Measuring rates of structural and functional change in glaucoma. British Journal of Ophthalmology, 2015, 99, 893-898.	3.9	26
45	Observational Outcomes of Initial Trabeculectomy With Mitomycin C in Patients of African Descent vs Patients of European Descent. JAMA Ophthalmology, 2018, 136, 1106.	2.5	26
46	Outcomes of Small-Incision Cataract Surgery in Eyes With Preexisting Ahmed Glaucoma Valves. American Journal of Ophthalmology, 2005, 140, 911-913.	3.3	25
47	Optic Nerve Traction During Adduction in Open Angle Glaucoma with Normal versus Elevated Intraocular Pressure. Current Eye Research, 2020, 45, 199-210.	1.5	25
48	Peripapillary Scleral Bowing Increases with Age and Is Inversely Associated with Peripapillary Choroidal Thickness in Healthy Eyes. American Journal of Ophthalmology, 2020, 217, 91-103.	3.3	25
49	Cataract Surgery and Rate of Visual Field Progression in Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2019, 201, 19-30.	3.3	24
50	Performance of the Visual Field Index in Glaucoma Patients With Moderately Advanced Visual Field Loss. American Journal of Ophthalmology, 2014, 157, 39-43.	3.3	23
51	Comparison of Results of Initial Trabeculectomy With Mitomycin C After Prior Clear-corneal Phacoemulsification to Outcomes in Phakic Eyes. Journal of Glaucoma, 2013, 22, 52-59.	1.6	22
52	A Method to Measure the Rate of Glaucomatous Visual Field Change. Translational Vision Science and Technology, 2018, 7, 14.	2.2	22
53	Patterns of Damage in Chronic Angle-Closure Glaucoma Compared to Primary Open-Angle Glaucoma. American Journal of Ophthalmology, 2011, 152, 74-80.e2.	3.3	21
54	Global and Pointwise Rates of Decay in Glaucoma Eyes Deteriorating according to Pointwise Event Analysis., 2013, 54, 1208.		19

#	Article	IF	Citations
55	Selecting visual field tests and assessing visual field deterioration in glaucoma. Canadian Journal of Ophthalmology, 2014, 49, 497-505.	0.7	19
56	Same-site Trabeculectomy Revision for Failed Trabeculectomy: Outcomes and Risk Factors for Failure. American Journal of Ophthalmology, 2016, 170, 110-118.	3.3	19
57	Longitudinal Macular Structure-Function Relationships in Glaucoma and Their Sources of Variability. American Journal of Ophthalmology, 2019, 207, 18-36.	3.3	18
58	Predictors of Long-Term Visual Field Fluctuation in Glaucoma Patients. Ophthalmology, 2020, 127, 739-747.	5.2	18
59	Vertical Macular Asymmetry Measures Derived From SD-OCT for Detection of Early Glaucoma. , 2017, 58, 4310.		17
60	Comparison of Rates of Progression of Macular OCT Measures in Glaucoma. Translational Vision Science and Technology, 2020, 9, 50.	2.2	17
61	Structure-Function Relationships in Perimetric Glaucoma: Comparison of Minimum-Rim Width and Retinal Nerve Fiber Layer Parameters., 2017, 58, 4623.		16
62	Effect of Cataract Extraction on the Visual Field Decay Rate in Patients With Glaucoma. JAMA Ophthalmology, 2014, 132, 1296.	2.5	15
63	Prediction of Glaucoma Progression with Structural Parameters: Comparison of Optical Coherence Tomography and Clinical Disc Parameters. American Journal of Ophthalmology, 2019, 208, 19-29.	3.3	15
64	Trabeculectomy With Mitomycin-C: Outcomes and Risk Factors for Failure in Primary Angle-closure Glaucoma. Journal of Glaucoma, 2018, 27, 101-107.	1.6	14
65	Adduction-Induced Strain on the Optic Nerve in Primary Open Angle Glaucoma at Normal Intraocular Pressure. Current Eye Research, 2021, 46, 568-578.	1.5	14
66	Fluctuation of Intraocular Pressure as a Predictor of Visual Field Progression. JAMA Ophthalmology, 2008, 126, 1168.	2.4	13
67	The Relationship of the Clinical Disc Margin and Bruch's Membrane Opening in Normal and Glaucoma Subjects., 2016, 57, 1468.		13
68	Quantification of Visual Field Variability in Glaucoma: Implications for Visual Field Prediction and Modeling. Translational Vision Science and Technology, 2019, 8, 25.	2.2	13
69	Longitudinal Structure-Function Relationships With Scanning Laser Ophthalmoscopy and Standard Achromatic Perimetry. JAMA Ophthalmology, 2012, 130, 826.	2.4	10
70	Bruch's membrane opening-minimum rim width and visual field loss in glaucoma: a broken stick analysis. International Journal of Ophthalmology, 2018, 11, 828-834.	1.1	10
71	Author Response: On Alternative Methods for Measuring Visual Field Decay: Tobit Linear Regression. , 2012, 53, 118.		8
72	The Fast Component of Visual Field Decay Rate Correlates With Disc Rim Area Change Throughout the Entire Range of Glaucomatous Damage., 2015, 56, 5997.		8

#	Article	IF	Citations
7 3	Enhancement of Visual Field Predictions with Pointwise Exponential Regression (PER) and Pointwise Linear Regression (PLR). Translational Vision Science and Technology, 2016, 5, 12.	2.2	8
74	The Fovea-BMO Axis Angle and Macular Thickness Vertical Asymmetry Across The Temporal Raphe. Journal of Glaucoma, 2018, 27, 993-998.	1.6	8
7 5	Relationship of the Macular Ganglion Cell and Inner Plexiform Layers in Healthy and Glaucoma Eyes. Translational Vision Science and Technology, 2019, 8, 27.	2.2	8
76	Estimating Ganglion Cell Complex Rates of Change With Bayesian Hierarchical Models. Translational Vision Science and Technology, 2021, 10, 15.	2,2	8
77	Comparison of regression models for serial visual field analysis. Japanese Journal of Ophthalmology, 2014, 58, 504-514.	1.9	7
78	Detection of Glaucoma Deterioration in the Macular Region with Optical Coherence Tomography: Challenges and Solutions. American Journal of Ophthalmology, 2021, 222, 277-284.	3.3	7
79	Detection of Longitudinal Ganglion Cell/Inner Plexiform Layer Change: Comparison of Two Spectral-Domain Optical Coherence Tomography Devices. American Journal of Ophthalmology, 2021, 231, 1-10.	3.3	7
80	Intraretinal Layer Segmentation Using Cascaded Compressed U-Nets. Journal of Imaging, 2022, 8, 139.	3.0	7
81	Multivariate Longitudinal Modeling of Macular Ganglion Cell Complex. Ophthalmology Science, 2022, 2, 100187.	2.5	7
82	Optical coherence tomography angiography: A new tool in glaucoma diagnostics and research. Journal of Ophthalmic and Vision Research, 2017, 12, 325.	1.0	6
83	Conditional GAN for Prediction of Glaucoma Progression with Macular Optical Coherence Tomography. Lecture Notes in Computer Science, 2020, , 761-772.	1.3	6
84	Ganglion Cell Complex: The Optimal Measure for Detection of Structural Progression in the Macula. American Journal of Ophthalmology, 2022, 237, 71-82.	3.3	6
85	Risk factors for microcystic macular oedema in glaucoma. British Journal of Ophthalmology, 2023, 107, 505-510.	3.9	5
86	Strabismus After Ahmed Glaucoma Valve Implantation. American Journal of Ophthalmology, 2021, 222, 1-5.	3.3	4
87	Local Macular Thickness Relationships between 2 OCT Devices. Ophthalmology Glaucoma, 2021, 4, 209-215.	1.9	4
88	Outcomes of Glaucoma Drainage Device Surgery in Eyes with Treated Uveal Melanoma. Ocular Oncology and Pathology, 2019, 5, 20-27.	1.0	3
89	Efficacy of Combined Suprachoroidal Stent and Cataract Surgery in Patients With Glaucoma. Journal of Glaucoma, 2020, 29, 627-638.	1.6	3
90	Reply. American Journal of Ophthalmology, 2014, 158, 211-212.	3.3	2

#	Article	IF	Citations
91	Expert Evaluation of Visual Field Decay in Glaucoma Correlates With the Fast Component of Visual Field Loss. Journal of Glaucoma, 2017, 26, 902-910.	1.6	2
92	Optic Disc Image Subtraction as an Aid to Detect Glaucoma Progression. Translational Vision Science and Technology, 2017, 6, 14.	2.2	2
93	Pointwise Methods to Measure Long-term Visual Field Progression in Glaucoma. JAMA Ophthalmology, 2020, 138, 536.	2.5	2
94	Comparison of Ganglion Cell Layer and Ganglion Cell/Inner Plexiform Layer Measures for Detection of Early Glaucoma. Ophthalmology Glaucoma, 2023, 6, 58-67.	1.9	2
95	Intraocular Pressure–Lowering Effect of 0.005% Latanoprost with Two Different Dosing Regimens. Journal of Ocular Pharmacology and Therapeutics, 2012, 28, 524-528.	1.4	1
96	Anterior segment optical coherence tomography in subtypes of angle closure glaucoma. Journal of Current Ophthalmology, 2016, 28, 159-160.	0.8	1
97	Usefulness of Macular Temporal Vertical Asymmetry for Differentiating Optic Neuropathies from Glaucoma. Ophthalmology, 2019, 126, 1140.	5.2	1
98	Optic Nerve Head and RNFL Imaging: Comparison of Technologies. , 2016, , 63-70.		1
99	Modified deep sclerectomy for the surgical treatment of glaucoma. Journal of Ophthalmic and Vision Research, 2019, 14, 144.	1.0	1
100	The Trajectory of Glaucoma Progression in 2-Dimensional Structural–Functional Space. Ophthalmology Glaucoma, 2020, 3, 466-474.	1.9	1
101	Author Response: Comparison of Local Structure–Function Relationships and Dynamic Range in Glaucoma. , 2016, 57, 6406.		O
102	Re: Saeedi etÂal: Agreement and predictors of discordance of 6 visual field progression algorithms (Ophthalmology. 2019;126:822–828). Ophthalmology, 2019, 126, e77-e78.	5.2	0
103	A Novel Similarity Measure for Retinal Optical Coherence Tomography Images. Lecture Notes in Computer Science, 2021, , 276-286.	1.3	O
104	Structural-Functional Glaucoma Progression Trajectory in 2-Dimensional Space. Journal of Glaucoma, 2022, 31, 250-260.	1.6	0
105	Editorial –ÂAn Alternate Technique for Goniotomy. Journal of Ophthalmic and Vision Research, 0, , .	1.0	O
106	Measurement of The Inner Macular Layers for Monitoring of Glaucoma: Confounding Effects of Age-Related Macular Degeneration. Ophthalmology Glaucoma, 2022, , .	1.9	0