Zhanliang Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2108070/publications.pdf Version: 2024-02-01

ΖΗΛΝΙΙΑΝΟ ΤΛΟ

#	Article	IF	CITATIONS
1	Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Research, 2022, 15, 2047-2051.	5.8	35
2	Improving zinc anode reversibility by hydrogen bond in hybrid aqueous electrolyte. Chemical Engineering Journal, 2022, 427, 131705.	6.6	61
3	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	29
4	Hydrogen Bond Shielding Effect for Highâ€Performance Aqueous Zinc Ion Batteries. Small, 2022, 18, e2107115.	5.2	27
5	Orthoquinone–Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc–Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
6	Functionalized Boron Nitride-Based Modification Layer as Ion Regulator Toward Stable Lithium Anode at High Current Densities. ACS Applied Materials & Interfaces, 2021, 13, 391-399.	4.0	17
7	An ultralow-temperature aqueous zinc-ion battery. Journal of Materials Chemistry A, 2021, 9, 7042-7047.	5.2	87
8	High Power and Energy Density Aqueous Proton Battery Operated at â^' 90Â ° C. Advanced Functional Materials, 2021, 31, 2010127.	7.8	77
9	"Waterâ€inâ€Deep Eutectic Solvent―Electrolytes for Highâ€Performance Aqueous Znâ€ion Batteries. Advanced Functional Materials, 2021, 31, 2102035.	7.8	126
10	Designing Electrolyte Structure to Suppress Hydrogen Evolution Reaction in Aqueous Batteries. ACS Energy Letters, 2021, 6, 2174-2180.	8.8	126
11	Bipolar Organic Polymer for High Performance Symmetric Aqueous Proton Battery. Small Methods, 2021, 5, e2100367.	4.6	46
12	Recent progress and strategies toward high performance zinc-organic batteries. Journal of Energy Chemistry, 2021, 63, 87-112.	7.1	31
13	lssues and opportunities on low-temperature aqueous batteries. Chemical Engineering Journal, 2021, 423, 130253.	6.6	69
14	An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2700-2705.	5.2	58
15	Three-dimensional lithiophilic Cu@Sn nanocones for dendrite-free lithium metal anodes. Science China Materials, 2021, 64, 1087-1094.	3.5	13
16	Synergistic Effect of Cation and Anion for Low-Temperature Aqueous Zinc-Ion Battery. Nano-Micro Letters, 2021, 13, 204.	14.4	67
17	An Overcrowded Water-Ion Solvation Structure for a Robust Anode Interphase in Aqueous Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51048-51056.	4.0	18
18	Inverse-spinel Mg2MnO4 material as cathode for high-performance aqueous magnesium-ion battery. Journal of Power Sources, 2021, 515, 230643.	4.0	16

#	Article	IF	CITATIONS
19	Insights into the hydronium-ion storage of alloxazine in mild electrolyte. Journal of Materials Chemistry A, 2020, 8, 21983-21987.	5.2	17
20	Water cointercalation for high-energy-density aqueous zinc-ion battery based potassium manganite cathode. Journal of Power Sources, 2020, 478, 228758.	4.0	36
21	Ion Redistribution and Rapid-Transfer Composite Protective Layer for Stable Lithium Metal Anodes. ACS Applied Energy Materials, 2020, 3, 7257-7264.	2.5	12
22	Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile. Electrochimica Acta, 2020, 358, 136937.	2.6	78
23	A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Research, 2020, 13, 676-683.	5.8	52
24	Layered Ca _{0.28} MnO ₂ ·0.5H ₂ O as a High Performance Cathode for Aqueous Zincâ€lon Battery. Small, 2020, 16, e2000597.	5.2	155
25	An inverse-spinel Mg ₂ MnO ₄ cathode for high-performance and flexible aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22686-22693.	5.2	25
26	Safety-reinforced rechargeable Li-CO2 battery based on a composite solid state electrolyte. Nano Research, 2019, 12, 2543-2548.	5.8	31
27	Aqueous Batteries Operated at â^'50 °C. Angewandte Chemie, 2019, 131, 17150-17155.	1.6	47
28	Aqueous Batteries Operated at â^'50 °C. Angewandte Chemie - International Edition, 2019, 58, 16994-169	997.2	277
29	Na ₃ V ₂ (PO ₄) ₂ F ₃ –SWCNT: a high voltage cathode for non-aqueous and aqueous sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 248-256.	5.2	111
30	Ultrathin 2D TiS ₂ Nanosheets for High Capacity and Long‣ife Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803210.	10.2	100
31	All-Climate Aqueous Dual-Ion Hybrid Battery with Ultrahigh Rate and Ultralong Life Performance. ACS Applied Energy Materials, 2019, 2, 4370-4378.	2.5	50
32	A highly efficient cathode catalyst γ-MnO2@CNT composite for sodium-air batteries. Science China Chemistry, 2019, 62, 727-731.	4.2	3
33	A novel aqueous sodium–manganese battery system for energy storage. Journal of Materials Chemistry A, 2019, 7, 8122-8128.	5.2	36
34	MoS ₂ -modified graphite felt as a high performance electrode material for zinc–polyiodide redox flow batteries. Inorganic Chemistry Frontiers, 2019, 6, 731-735.	3.0	17
35	Nafion/Titanium Dioxideâ€Coated Lithium Anode for Stable Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2018, 13, 1379-1385.	1.7	34
36	<i>In situ</i> atomic force microscopy study of nano–micro sodium deposition in ester-based electrolytes. Chemical Communications, 2018, 54, 2381-2384.	2.2	104

#	Article	IF	CITATIONS
37	Achieving a stable Na metal anode with a 3D carbon fibre scaffold. Inorganic Chemistry Frontiers, 2018, 5, 864-869.	3.0	40
38	High-Performance Aqueous Sodium-Ion Batteries with Hydrogel Electrolyte and Alloxazine/CMK-3 Anode. ACS Sustainable Chemistry and Engineering, 2018, 6, 7761-7768.	3.2	41
39	KTiOPO4 as a novel anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2018, 754, 147-152.	2.8	8
40	Recent Developments on and Prospects for Electrode Materials with Hierarchical Structures for Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1701415.	10.2	436
41	Flexible and Tailorable Naâ^'CO ₂ Batteries Based on an Allâ€Solidâ€State Polymer Electrolyte. ChemElectroChem, 2018, 5, 3628-3632.	1.7	42
42	All Carbon Dual Ion Batteries. ACS Applied Materials & amp; Interfaces, 2018, 10, 35978-35983.	4.0	93
43	A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Research, 2018, 11, 6244-6251.	5.8	54
44	Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Materials Horizons, 2017, 4, 268-273.	6.4	105
45	Quasi–solid state rechargeable Na-CO ₂ batteries with reduced graphene oxide Na anodes. Science Advances, 2017, 3, e1602396.	4.7	193
46	Flexible and Free-Standing Organic/Carbon Nanotubes Hybrid Films as Cathode for Rechargeable Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 14498-14506.	1.5	52
47	High-Capacity and Ultrafast Na-Ion Storage of a Self-Supported 3D Porous Antimony Persulfide–Graphene Foam Architecture. Nano Letters, 2017, 17, 3668-3674.	4.5	129
48	Capillary-Induced Ge Uniformly Distributed in N-Doped Carbon Nanotubes with Enhanced Li-Storage Performance. Small, 2017, 13, 1700920.	5.2	27
49	Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Research, 2017, 10, 2210-2222.	5.8	50
50	Selenium Phosphide (Se ₄ P ₄) as a New and Promising Anode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1601973.	10.2	122
51	Preparation and characterization of LiNi 0.8 Co 0.15 Al 0.05 O 2 with high cycling stability by using AlO 2 - as Al source. Ceramics International, 2017, 43, 3885-3892.	2.3	19
52	In Situ Atomic Force Microscopic Studies of Single Tin Nanoparticle: Sodiation and Desodiation in Liquid Electrolyte. ACS Applied Materials & Interfaces, 2017, 9, 28620-28626.	4.0	26
53	Effects of Carbon Content on the Electrochemical Performances of MoS ₂ –C Nanocomposites for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 22168-22174.	4.0	46
54	SiO ₂ -coated LiNi _{0.915} Co _{0.075} Al _{0.01} O ₂ cathode material for rechargeable Li-ion batteries. Nanoscale, 2016, 8, 19263-19269.	2.8	108

#	Article	IF	CITATIONS
55	MoS ₂ with an intercalation reaction as a long-life anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2016, 3, 532-535.	3.0	70
56	Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Research, 2016, 9, 198-206.	5.8	142
57	Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catalysis Science and Technology, 2016, 6, 3443-3448.	2.1	102
58	FeS ₂ microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. Journal of Materials Chemistry A, 2015, 3, 12898-12904.	5.2	111
59	Sn–Al core–shell nanocomposite as thin film anode for lithium-ion batteries. Journal of Alloys and Compounds, 2015, 644, 742-749.	2.8	17
60	Ultrasmall Sn Nanoparticles Embedded in Carbon as Highâ€Performance Anode for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 214-220.	7.8	498
61	Energy Storage: Ultrasmall Sn Nanoparticles Embedded in Carbon as Highâ€Performance Anode for Sodiumâ€ion Batteries (Adv. Funct. Mater. 2/2015). Advanced Functional Materials, 2015, 25, 340-340.	7.8	4
62	Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode. Nano Letters, 2015, 15, 5982-5987.	4.5	201
63	FeSe ₂ Microspheres as a Highâ€Performance Anode Material for Naâ€Ion Batteries. Advanced Materials, 2015, 27, 3305-3309.	11.1	581
64	CuCo nanoparticles supported on hierarchically porous carbon as catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2015, 651, 382-388.	2.8	75
65	The enhanced hydrogen storage of micro-nanostructured hybrids of Mg(BH ₄) ₂ –carbon nanotubes. Nanoscale, 2015, 7, 18305-18311.	2.8	30
66	MoS ₂ Nanoflowers with Expanded Interlayers as Highâ€Performance Anodes for Sodiumâ€Ion Batteries. Angewandte Chemie, 2014, 126, 13008-13012.	1.6	310
67	Inorganic & organic materials for rechargeable Li batteries with multi-electron reaction. Science China Materials, 2014, 57, 42-58.	3.5	78
68	Magnesium–air batteries: from principle to application. Materials Horizons, 2014, 1, 196-206.	6.4	371
69	Porous 0.2Li ₂ MnO ₃ ·0.8LiNi _{0.5} Mn _{0.5} O ₂ nanorods as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1636-1640.	5.2	71
70	Ti/Si/Ti sandwich-like thin film as the anode of lithium-ion batteries. Journal of Power Sources, 2014, 248, 1141-1148.	4.0	55
71	Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Research, 2014, 7, 774-781.	5.8	74
72	Hydrothermal synthesis of spindle-like Li2FeSiO4-C composite as cathode materials for lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 274-281.	7.1	19

#	Article	IF	CITATIONS
73	Fused Heteroaromatic Organic Compounds for Highâ€Power Electrodes of Rechargeable Lithium Batteries. Advanced Energy Materials, 2013, 3, 600-605.	10.2	293
74	Intergrown LiNi0.5Mn1.5O4·LiNi1/3Co1/3Mn1/3O2 composite nanorods as high-energy density cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13742.	5.2	16
75	Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Research, 2013, 6, 38-46.	5.8	232
76	Si–Y multi-layer thin films as anode materials of high-capacity lithium-ion batteries. Journal of Power Sources, 2012, 217, 102-107.	4.0	20
77	First-Principles Study of Zigzag MoS ₂ Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries. Journal of Physical Chemistry C, 2012, 116, 1307-1312.	1.5	164
78	Organic Electrode Materials for Rechargeable Lithium Batteries. Advanced Energy Materials, 2012, 2, 742-769.	10.2	1,125
79	Organic Electrodes: Organic Electrode Materials for Rechargeable Lithium Batteries (Adv. Energy) Tj ETQq1 1 0.7	84314 rgE 10.2	BT /Overlock
80	Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy and Environmental Science, 2011, 4, 3668.	15.6	264
81	NANOSTRUCTURED ELECTRODE MATERIALS FOR LITHIUM BATTERIES. , 2011, , 85-126.		0
82	Controllable synthesis and characterization of porous FeVO ₄ nanorods and nanoparticles. CrystEngComm, 2011, 13, 897-901.	1.3	37
83	Preparation of Li4Ti5O12 submicrospheres and their application as anode materials of rechargeable lithium-ion batteries. Science China Chemistry, 2011, 54, 936-940.	4.2	15
84	Carbon-supported Ni1â^'x@Ptx (xÂ=Â0.32, 0.43, 0.60, 0.67, and 0.80) core–shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2011, 36, 1984-1990.	3.8	79
85	A Soft Hydrogen Storage Material: Poly(Methyl Acrylate) onfined Ammonia Borane with Controllable Dehydrogenation. Advanced Materials, 2010, 22, 394-397.	11.1	111
86	Mg micro/nanoscale materials with sphere-like morphologies: Size-controlled synthesis and characterization. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 35-39.	0.2	2
87	Magnesium microspheres and nanospheres: Morphology-controlled synthesis and application in Mg/MnO2 batteries. Nano Research, 2009, 2, 713-721.	5.8	30
88	PtxNi1â^'x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 2009, 34, 8785-8791.	3.8	146
89	Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. Journal of Materials Chemistry, 2009, 19, 4108.	6.7	52
90	Magnesium nanostructures for energy storage and conversion. Journal of Materials Chemistry, 2009, 19, 2877.	6.7	78

#	Article	IF	CITATIONS
91	Facile Synthesis of Nanoporous γ-MnO ₂ Structures and Their Application in Rechargeable Li-Ion Batteries. Crystal Growth and Design, 2008, 8, 2799-2805.	1.4	178
92	Metallic Aluminum Nanorods: Synthesis via Vapor-Deposition and Applications in Al/air Batteries. Chemistry of Materials, 2007, 19, 5812-5814.	3.2	64
93	Synthesis, characterization and hydrogen storage capacity of MS2 (M = Mo, Ti) nanotubes. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2006, 1, 260-263.	0.4	10