
Jaume Bech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107986/publications.pdf Version: 2024-02-01

INUME RECH

#	Article	IF	CITATIONS
1	Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. Science of the Total Environment, 1997, 203, 83-91.	3.9	171
2	Rock fragments and soil hydrological processes: Significance and progress. Catena, 2016, 147, 153-166.	2.2	98
3	Title is missing!. Plant and Soil, 2001, 230, 247-256.	1.8	85
4	Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 2012, 113, 106-111.	1.5	65
5	Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. Journal of Geochemical Exploration, 2012, 123, 109-113.	1.5	62
6	Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecological Engineering, 2006, 27, 145-152.	1.6	59
7	Trace element accumulation in plants from an aridic area affected by mining activities. Journal of Geochemical Exploration, 2012, 123, 8-12.	1.5	57
8	Distribution and bioaccumulation of arsenic and antimony in Dittrichia viscosa growing in mining-affected semiarid soils in southeast Spain. Journal of Geochemical Exploration, 2012, 123, 128-135.	1.5	51
9	Concentrations of heavy metals in urban soils of Talcahuano (Chile): a preliminary study. Environmental Monitoring and Assessment, 2008, 140, 91-98.	1.3	50
10	Screening for new accumulator plants in potential hazards elements polluted soil surrounding Peruvian mine tailings. Catena, 2016, 136, 66-73.	2.2	50
11	Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. Journal of Geochemical Exploration, 2018, 184, 261-270.	1.5	47
12	Baseline Concentrations of Trace Elements in Surface Soils of the Torrelles and Sant Climent Municipal Districts (Catalonia, Spain). Environmental Monitoring and Assessment, 2005, 108, 309-322.	1.3	42
13	Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. Catena, 2019, 175, 304-316.	2.2	42
14	Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano, Chile. Journal of Soils and Sediments, 2018, 18, 2335-2349.	1.5	36
15	Antimony accumulation and toxicity tolerance mechanisms in Trifolium species. Journal of Geochemical Exploration, 2014, 147, 167-172.	1.5	34
16	An assessment of the potentially hazardous element contamination in urban soils of Arica, Chile. Journal of Geochemical Exploration, 2018, 184, 345-357.	1.5	33
17	Concentration and distribution of twelve metals in Central Catalonia surface soils. Journal of Geochemical Exploration, 2011, 109, 92-103.	1.5	32
18	Background levels of potentially toxic elements in soils: A case study in Catamarca (a semiarid region) Tj ETQq	0 0 0 rgBT /	Overlock 10 T

18

#	Article	IF	CITATIONS
19	Geochemical characterisation of surface waters, topsoils and efflorescences in a historic metal-mining area in Spain. Journal of Soils and Sediments, 2016, 16, 1238-1252.	1.5	32
20	Spatial distribution of potentially harmful elements in urban soils, city of Talcahuano, Chile. Journal of Geochemical Exploration, 2018, 184, 333-344.	1.5	31
21	Cs-137 distribution in forest floor and surface soil layers from two mountainous regions in Bulgaria. Journal of Geochemical Exploration, 2008, 96, 256-266.	1.5	29
22	Trace element concentrations in schoolyard soils from the port city of Talcahuano, Chile. Journal of Geochemical Exploration, 2014, 147, 229-236.	1.5	29
23	Selenium and other trace elements in phosphate rock of Bayovar–Sechura (Peru). Journal of Geochemical Exploration, 2010, 107, 136-145.	1.5	28
24	Screening of wild plants for use in the phytoremediation of mining-influenced soils containing arsenic in semiarid environments. Journal of Soils and Sediments, 2014, 14, 794-809.	1.5	27
25	Urban areas, human health and technosols for the green deal. Environmental Geochemistry and Health, 2021, 43, 5065-5086.	1.8	27
26	A comparative study of the accumulation of trace elements in Brassicaceae plant species with phytoremediation potential. Applied Geochemistry, 2019, 108, 104377.	1.4	26
27	Metal uptake by wetland plants: implications for phytoremediation and restoration. Journal of Soils and Sediments, 2017, 17, 1384-1393.	1.5	25
28	Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia,) Tj ETQq0 0 0 rgB	T /Overloc 1.5	k 10 Tf 50 38 24
29	Cesium-137 contamination of oak (Quercus petrae Liebl.) from sub-mediterranean zone in South Bulgaria. Journal of Environmental Radioactivity, 2010, 101, 864-868.	0.9	24
30	Fractionation of chromium in tannery sludge-amended soil and its availability to fenugreek plants. Journal of Soils and Sediments, 2014, 14, 697-702.	1.5	22
31	The relationship between WRB soil units and heavy metals content in soils of Catamarca (Argentina). Journal of Geochemical Exploration, 2008, 96, 77-85.	1.5	21
32	Technosols designed for rehabilitation of mining activities using mine spoils and biosolids. Ion mobility and correlations using percolation columns. Catena, 2017, 148, 74-80.	2.2	20
33	Title is missing!. Environmental Monitoring and Assessment, 2000, 61, 301-313.	1.3	19
34	Study of subsoil in former petrol stations in SE of Spain: Physicochemical characterization and hydrocarbon contamination assessment. Journal of Geochemical Exploration, 2014, 147, 306-320.	1.5	19
35	Soil contamination and human health: Part 1—preface. Environmental Geochemistry and Health, 2020, 42, 1-6.	1.8	16

36Are Mediterranean mountains Entisols weakly developed? The case of Orthents from Sierra Nevada
(Southern Spain). Geoderma, 2004, 118, 115-131.2.315

#	Article	IF	CITATIONS
37	Concentration of Cd, Cu, Pb, Zn, Al, and Fe in soils of Manresa, NE Spain. Environmental Monitoring and Assessment, 2008, 145, 257-266.	1.3	15
38	Study on the mobility and bioavailability of PTEs in soils from Urban Forest Parks in Sofia, Bulgaria. Journal of Geochemical Exploration, 2014, 147, 222-228.	1.5	15
39	Ecological risk assessment of mercury and chromium in greenhouse soils. Environmental Geochemistry and Health, 2020, 42, 313-324.	1.8	15
40	The influence of the industrial area on the pollution outside its borders: a case study from Quintero and Puchuncavi districts, Chile. Environmental Geochemistry and Health, 2020, 42, 2557-2572.	1.8	14
41	Baseline Concentrations of Potentially Toxic Elements in Natural Surface Soils in Torrelles (Spain). Environmental Forensics, 2006, 7, 369-375.	1.3	12
42	Soil Pollution and Reclamation. Journal of Geochemical Exploration, 2014, 147, 77-79.	1.5	10
43	Rehabilitation of Disturbed Lands with Industrial Wastewater Sludge. Minerals (Basel, Switzerland), 2022, 12, 376.	0.8	10
44	Remediation of Potentially Toxic Elements in Contaminated Soils. , 2014, , 253-308.		9
45	Title is missing!. Environmental Monitoring and Assessment, 2000, 64, 583-590.	1.3	8
46	Relationship of the mobile forms of calcium and strontium in soils with their accumulation in meadow plants in the area of Kashin–Beck endemia. Environmental Geochemistry and Health, 2020, 42, 159-171.	1.8	8
47	Heavy metal pollution index calculation in geochemistry assessment: a case study on Playa Las Petroleras. Environmental Geochemistry and Health, 2023, 45, 409-426.	1.8	8
48	Levels and pedogeochemical mapping of lead and chromium in soils of Barcelona province (NE Spain). Journal of Geochemical Exploration, 2011, 109, 104-112.	1.5	7
49	Assessment and abatement of the eco-risk caused by mine spoils in the dry subtropical climate. Environmental Geochemistry and Health, 2022, 44, 1581-1603.	1.8	7
50	Potential Hazardous Elements Fluxes from Soil to Plants and the Food Chain. , 2014, , 309-337.		6
51	Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress. Plants, 2021, 10, 33.	1.6	6
52	Ecoefficient In Situ Technologies for the Remediation of Sites Affected by Old Mining Activities: The Case of Portman Bay. , 2017, , 355-373.		4
53	Hazardous Element Accumulation in Soils and Native Plants in Areas Affected by Mining Activities in South America. , 2017, , 419-461.		4
54	Environmental consequences from the use of sewage sludge in soil restoration related to microbiological pollution. Journal of Soils and Sediments, 2018, 18, 2172-2178.	1.5	4

#	Article	lF	CITATIONS
55	Accumulation of potentially toxic elements by plants of North Caucasian Alyssum species and their molecular phylogenetic analysis. Environmental Geochemistry and Health, 2021, 43, 1617-1628.	1.8	4
56	Phytoremediation of potentially toxic elements using constructed wetlands in coastal areas with a mining influence. Environmental Geochemistry and Health, 2021, 43, 1385-1400.	1.8	4
57	Complex Characteristic of Zircon from Granitoids of the Verkhneurmiysky Massif (Amur Region). Minerals (Basel, Switzerland), 2021, 11, 86.	0.8	4
58	Trace elements in soils: Baseline levels and imbalance. Journal of Geochemical Exploration, 2008, 96, vii-viii.	1.5	3
59	Potentially harmful elements in soil–plant interactions. Journal of Soils and Sediments, 2014, 14, 651-654.	1.5	3
60	Preface special issue CATENA: Reclamation of mining site soils, part II. Catena, 2017, 148, 1-2.	2.2	3
61	Reclamation and management of polluted soils: options and case studies. Journal of Soils and Sediments, 2018, 18, 2131-2135.	1.5	3
62	Potential bioavailability assessment and distribution of heavy metal(oids) in cores from Portman Bay (SE, Spain). Geochemistry: Exploration, Environment, Analysis, 2019, 19, 193-200.	0.5	3
63	Availability of cu and zn to plants growing on and off a malachite site. Toxicological and Environmental Chemistry, 1995, 52, 143-151.	0.6	2
64	Radioactive chemical species in soils: Pollution and remediation. Journal of Geochemical Exploration, 2014, 142, 1-3.	1.5	2
65	A study of trace elements in plants of the Polar Urals and Chukotka in the search for metallophyte hyperaccumulators. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 138-145.	0.5	2
66	Research of reclamation of polluted mine soils by native metallophytes: some cases. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 164-170.	0.5	2
67	Soil contamination and human health: part 3. Environmental Geochemistry and Health, 2020, 42, 4065-4071.	1.8	2
68	Trace element accumulation by soils and plants in the North Caucasian geochemical province. Journal of Mining Institute, 0, 247, 1-13.	0.8	2
69	Special Issue on "Metallophytes for soil remediationâ€+ Preface. Environmental Geochemistry and Health, 2021, 43, 1319-1325.	1.8	2
70	Soil contamination and human health: recent contributions. Environmental Geochemistry and Health, 2022, 44, 295-300.	1.8	2
71	Special Issue "Geochemistry, Soil Contamination and Human Health. Part 2.― Environmental Geochemistry and Health, 2022, 44, 1667-1671.	1.8	2
72	Selenium and iodine anomalies in soils and health. Journal of Geochemical Exploration, 2010, 107, v-vi.	1.5	1

#	ARTICLE	IF	CITATIONS
73	Environmental Risk Assessment of Tailings Ponds Using Geophysical and Geochemical Techniques. , 2017, , 135-148.		1
74	Proposals for the Remediation of Soils Affected by Mining Activities in Southeast Spain. , 2017, , 297-328.		1
75	Soil contamination and human health: part 2. Environmental Geochemistry and Health, 2020, 42, 2287-2292.	1.8	1
76	Special issue on "Soil and plant contamination and remediation, Part 2â€: Environmental Geochemistry and Health, 2022, 44, 1183-1187.	1.8	1
77	Special issue "Soil and plant contamination and remediation: Part 1― Environmental Geochemistry and Health, 2022, 44, 1-6.	1.8	1
78	Potentially harmful elements in soils. Journal of Geochemical Exploration, 2014, 144, 217-219.	1.5	0
79	Special Issue APGEO: "Soil pollution and reclamation as a geochemical problem Part 2". Applied Geochemistry, 2020, 113, 104498.	1.4	Ο
80	Special issue on "geochemistry, soil contamination and human health. Part 1â€: Environmental Geochemistry and Health, 2021, 43, 4869-4874.	1.8	0
81	Introduction to the thematic set: Progress in Remediation of Polluted Soils. Geochemistry: Exploration, Environment, Analysis, 2019, 19, 91-92.	0.5	Ο
82	Environmental geochemistry and health (EGAH) Special Issue "reclamation of polluted soils for food production and human health: part 2― Environmental Geochemistry and Health, 2022, , 1.	1.8	0