Farahnaz Eghbali Babadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/210733/publications.pdf

Version: 2024-02-01

19 papers	391 citations	11 h-index	794141 19 g-index
19	19	19	572
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Release Mechanisms and Kinetic Models of Gypsum–Sulfur–Zeolite-Coated Urea Sealed with Microcrystalline Wax for Regulated Dissolution. ACS Omega, 2021, 6, 11144-11154.	1.6	19
2	Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food and Bioproducts Processing, 2020, 123, 296-303.	1.8	29
3	3D Bioprinting of Lignocellulosic Biomaterials. Advanced Healthcare Materials, 2020, 9, e2001472.	3.9	42
4	Response Surface Optimization of Multilayer Graphene Growth on Alumina-Supported Bimetallic Cobalt–Nickel Substrate. Arabian Journal for Science and Engineering, 2020, 45, 7455-7465.	1.7	1
5	Response Surface Method in the Optimization of a Rotary Pan-Equipped process for Increased Efficiency of Slow-Release Coated Urea. Processes, 2019, 7, 125.	1.3	8
6	Electrochemical investigation of amino acids Parkia seeds using the composite electrode based on copper/carbon nanotube/nanodiamond. Journal of Environmental Chemical Engineering, 2019, 7, 102979.	3.3	6
7	Carbon Dioxide Adsorption on Grafted Nanofibrous Adsorbents Functionalized Using Different Amines. Frontiers in Energy Research, 2019, 7, .	1.2	21
8	Current technologies in the extraction, enrichment and analytical detection of tocopherols and tocotrienols: A review. Critical Reviews in Food Science and Nutrition, 2017, 57, 2935-2942.	5.4	20
9	Carbon dioxide adsorption on nitrogen-enriched gel beads from calcined eggshell/sodium alginate natural composite. Chemical Engineering Research and Design, 2017, 109, 387-399.	2.7	23
10	Effect of catalyst and substrate on growth characteristics of carbon nanofiber onto honeycomb monolith. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 440-449.	2.7	6
11	Sulfonated Beet Pulp as Solid Catalyst in Oneâ€Step Esterification of Industrial Palm Fatty Acid Distillate. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 319-327.	0.8	12
12	Adsorption of carbon dioxide using activated carbon impregnated with Cu promoted by zinc. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52, 109-117.	2.7	54
13	New coating formulation for the slow release of urea using a mixture of gypsum and dolomitic limestone. Particuology, 2015, 23, 62-67.	2.0	41
14	Development, application, and evaluation of artificial neural network in investigating the removal efficiency of Acid Red 57 by synthesized mesoporous carbon-coated monoliths. Desalination and Water Treatment, 2015, 56, 2246-2257.	1.0	9
15	Fabrication and characterization porous carbon rod-shaped from almond natural fibers for environmental applications. Journal of Environmental Chemical Engineering, 2015, 3, 2273-2280.	3.3	10
16	Synthesis, characterization and performance evaluation of three-layered photoanodes by introducing a blend of WO3 and Fe2O3 for dye degradation. Applied Surface Science, 2014, 289, 53-61.	3.1	15
17	Comparative performance of different urea coating materials for slow release. Particuology, 2014, 17, 165-172.	2.0	63
18	Biosorption of azoimide on almond integument: Kinetics, isotherm and thermodynamics studies. Journal of Environmental Chemical Engineering, 2013, 1, 696-702.	3.3	7

#	Article	IF	CITATIONS
19	Effect of intermediate layer in photocurrent improvement of three-layer photoanodes using WO3 and Fe2O3. Journal of Environmental Chemical Engineering, 2013, 1, 1309-1314.	3.3	5