Jingyu Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107157/publications.pdf

Version: 2024-02-01

315616 236833 2,505 38 25 38 h-index citations g-index papers 38 38 38 2104 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine. Green Energy and Environment, 2023, 8, 1081-1090.	4.7	18
2	Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine. Chinese Journal of Chemical Engineering, 2023, 54, 316-322.	1.7	11
3	Electrochemical lithium ions pump for lithium recovery from brine by using a surface stability Al2O3–ZrO2 coated LiMn2O4 electrode. Journal of Energy Chemistry, 2022, 69, 244-252.	7.1	27
4	Engineering Dual Oxygen Simultaneously Modified Boron Nitride for Boosting Adsorptive Desulfurization of Fuel. Engineering, 2022, 14, 86-93.	3.2	11
5	Three-dimensional Ce-MOFs-derived Ce@C-BN nanobundles for adsorptive desulfurization. Applied Surface Science, 2022, 590, 152926.	3.1	19
6	Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO ₂ for Efficient Aerobic Catalytic Oxidative Desulfurization. Industrial & Engineering Chemistry Research, 2022, 61, 6292-6300.	1.8	12
7	Highly selective separation of lithium with hierarchical porous lithium-ion sieve microsphere derived from MXene. Desalination, 2022, 537, 115847.	4.0	32
8	Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. Journal of Colloid and Interface Science, 2021, 584, 154-163.	5.0	60
9	Engineering a tandem leaching system for the highly selective recycling of valuable metals from spent Li-ion batteries. Green Chemistry, 2021, 23, 2177-2184.	4.6	91
10	Highâ€performance adsorptive desulfurization by ternary hybrid boron carbon nitride aerogel. AICHE Journal, 2021, 67, e17280.	1.8	58
11	Binary molten salts mediated defect engineering on hexagonal boron nitride catalyst with long-term stability for aerobic oxidative desulfurization. Applied Surface Science, 2021, 558, 149724.	3.1	13
12	Sustainable and Convenient Recovery of Valuable Metals from Spent Li-Ion Batteries by a One-Pot Extraction Process. ACS Sustainable Chemistry and Engineering, 2021, 9, 13851-13861.	3.2	49
13	Phosphomolybdic acid encapsulated in ZIF-8-based porous ionic liquids for reactive extraction desulfurization of fuels. Inorganic Chemistry Frontiers, 2021, 9, 165-178.	3.0	24
14	The interaction nature between hollow silica-based porous ionic liquids and CO2: A DFT study. Journal of Molecular Graphics and Modelling, 2020, 100, 107694.	1.3	21
15	Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils. Green Energy and Environment, 2020, 5, 166-172.	4.7	83
16	Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chemistry, 2020, 320, 126666.	4.2	40
17	Synthesis of boron nitride nanosheets with N-defects for efficient tetracycline antibiotics adsorptive removal. Chemical Engineering Journal, 2020, 387, 124138.	6.6	75
18	Unraveling the mechanism of CO ₂ capture and separation by porous liquids. RSC Advances, 2020, 10, 42706-42717.	1.7	22

#	Article	IF	Citations
19	Synthesis of porous carbon <i>via</i> a waste tire leavening strategy for adsorptive desulfurization. RSC Advances, 2019, 9, 30575-30580.	1.7	8
20	A comparative study of the extractive desulfurization mechanism by Cu(II) and Zn-based imidazolium ionic liquids. Green Energy and Environment, 2019, 4, 38-48.	4.7	53
21	Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance. Nanotechnology, 2018, 29, 025604.	1.3	23
22	Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green Chemistry, 2018, 20, 4453-4460.	4.6	128
23	Graphene-like boron nitride anchored Brönsted acid ionic liquids as metal-free catalyst for advanced oxidation process. Molecular Catalysis, 2017, 436, 53-59.	1.0	27
24	Tailoring Nâ€Terminated Defective Edges of Porous Boron Nitride for Enhanced Aerobic Catalysis. Small, 2017, 13, 1701857.	5.2	60
25	Green aqueous biphasic systems containing deep eutectic solvents and sodium salts for the extraction of protein. RSC Advances, 2017, 7, 49361-49367.	1.7	53
26	Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity. ACS Omega, 2017, 2, 5385-5394.	1.6	86
27	Phosphomolybdic acid immobilized on ionic liquid-modified hexagonal boron nitride for oxidative desulfurization of fuel. RSC Advances, 2017, 7, 54266-54276.	1.7	26
28	Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst. Journal of Molecular Catalysis A, 2016, 423, 207-215.	4.8	51
29	Controlled Gas Exfoliation of Boron Nitride into Fewâ€Layered Nanosheets. Angewandte Chemie - International Edition, 2016, 55, 10766-10770.	7.2	271
30	Copper nanoparticles advance electron mobility of graphene-like boron nitride for enhanced aerobic oxidative desulfurization. Chemical Engineering Journal, 2016, 301, 123-131.	6.6	115
31	Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte. Small, 2016, 12, 3535-3542.	5.2	62
32	Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid. RSC Advances, 2016, 6, 140-147.	1.7	22
33	A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization. Chemical Communications, 2016, 52, 144-147.	2.2	206
34	Controllable Fabrication of Tungsten Oxide Nanoparticles Confined in Grapheneâ€Analogous Boron Nitride as an Efficient Desulfurization Catalyst. Chemistry - A European Journal, 2015, 21, 15421-15427.	1.7	63
35	Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. Journal of Materials Chemistry A, 2015, 3, 12738-12747.	5.2	126
36	Graphene-Analogue Hexagonal BN Supported with Tungsten-based Ionic Liquid for Oxidative Desulfurization of Fuels. ACS Sustainable Chemistry and Engineering, 2015, 3, 186-194.	3.2	167

Jingyu Pang

#	Article	IF	CITATIONS
37	Phosphotungstic Acid Immobilized on Ionic Liquid-Modified SBA-15: Efficient Hydrophobic Heterogeneous Catalyst for Oxidative Desulfurization in Fuel. Industrial & Engineering Chemistry Research, 2014, 53, 19895-19904.	1.8	118
38	Pyridinium-based temperature-responsive magnetic ionic liquid for oxidative desulfurization of fuels. Chemical Engineering Journal, 2013, 229, 250-256.	6.6	174