Juliano Alves Bonacin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107077/publications.pdf

Version: 2024-02-01

81 papers 2,205 citations

28 h-index 233421 45 g-index

84 all docs 84 docs citations

84 times ranked 2284 citing authors

#	Article	IF	CITATIONS
1	Influence of filament aging and conductive additive in 3D printed sensors. Analytica Chimica Acta, 2022, 1191, 339228.	5.4	23
2	Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Analytical Chemistry, 2022, 94, 6417-6429.	6.5	72
3	Prussian blue nanoparticles anchored on activated 3D printed sensor for the detection of -cysteine. Sensors and Actuators B: Chemical, 2022, 362, 131797.	7.8	15
4	Development of Disposable and Flexible Supercapacitor Based on Carbonaceous and Ecofriendly Materials. Journal of Carbon Research, 2022, 8, 32.	2.7	2
5	Sensing of L-methionine in biological samples through fully 3D-printed electrodes. Analytica Chimica Acta, 2021, 1142, 135-142.	5 . 4	36
6	Ready-to-use 3D-printed electrochemical cell for in situ voltammetry of immobilized microparticles and Raman spectroscopy. Analytica Chimica Acta, 2021, 1141, 57-62.	5.4	14
7	Electrochemical Sensor Based on Beeswax and Carbon Black Thin Biofilms for Determination of Paraquat in Apis mellifera Honey. Food Analytical Methods, 2021, 14, 606-615.	2.6	18
8	Electrochemical Sensor Based on Nanodiamonds and Manioc Starch for Detection of Tetracycline. Journal of Sensors, 2021, 2021, 1-10.	1.1	22
9	Development of conductive inks for electrochemical sensors and biosensors. Microchemical Journal, 2021, 164, 105998.	4.5	81
10	Biosensing strategies for the electrochemical detection of viruses and viral diseases – A review. Analytica Chimica Acta, 2021, 1159, 338384.	5 . 4	73
11	Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Advanced Energy and Sustainability Research, 2021, 2, 2100093.	5.8	22
12	Use of beeswax as an alternative binder in the development of composite electrodes: an approach for determination of hydrogen peroxide in honey samples. Electrochimica Acta, 2021, 390, 138876.	5.2	3
13	Propolis green biofilm for the immobilization of carbon nanotubes and metallic ions: Development of redox catalysts. Journal of Electroanalytical Chemistry, 2021, 900, 115747.	3.8	1
14	State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. Green Chemistry, 2021, 23, 5272-5301.	9.0	36
15	Hydrogen Environmental Benefits Depend on the Way of Production: An Overview of the Main Processes Production and Challenges by 2050. Advanced Energy and Sustainability Research, 2021, 2, 2170025.	5 . 8	9
16	Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta, 2020, 208, 120458.	5 . 5	82
17	Single step additive manufacturing (3D printing) of electrocatalytic anodes and cathodes for efficient water splitting. Sustainable Energy and Fuels, 2020, 4, 302-311.	4.9	49
18	Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst, The, 2020, 145, 1207-1218.	3.5	113

#	Article	IF	CITATIONS
19	3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications. Biosensors and Bioelectronics, 2020, 170, 112684.	10.1	78
20	Electrocatalytic water oxidation reaction promoted by cobalt-Prussian blue and its thermal decomposition product under mild conditions. Dalton Transactions, 2020, 49, 16488-16497.	3.3	13
21	Ligand Effects of Penta- and Hexacyanidoferrate-Derived Water Oxidation Catalysts on BiVO ₄ Photoanodes. ACS Applied Energy Materials, 2020, 3, 8448-8456.	5.1	13
22	Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles. Analytica Chimica Acta, 2020, 1132, 1-9.	5.4	58
23	Hematite Nanorods Photoanodes Decorated by Cobalt Hexacyanoferrate: The Role of Mixed Oxidized States on the Enhancement of Photoelectrochemical Performance. ACS Applied Energy Materials, 2020, 3, 10097-10107.	5.1	7
24	Electrochemical synthesis of Prussian blue from iron impurities in 3D-printed graphene electrodes: Amperometric sensing platform for hydrogen peroxide. Talanta, 2020, 219, 121289.	5.5	30
25	Role of Protonation and Isomerism in the Supramolecular Architectures of Heteroaryl-2-imidazole Compounds: Crystal Packing Patterns and Energetics. Crystal Growth and Design, 2020, 20, 5143-5159.	3.0	0
26	Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Analytica Chimica Acta, 2020, 1118, 73-91.	5.4	265
27	Synthesis and characterization of a nanocomposite NiO/SiO ₂ from a sustainable source of SiO ₂ . Particulate Science and Technology, 2019, 37, 911-915.	2.1	14
28	3D-Printed Low-Cost Spectroelectrochemical Cell for In Situ Raman Measurements. Analytical Chemistry, 2019, 91, 10386-10389.	6.5	32
29	Analysis of solvent-accessible voids and proton-coupled electron transfer of 2,6-bis $(1 < i > H < i > -1 $ imidazol-2-yl)pyridine and its hydrochloride. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1359-1371.	0.5	2
30	3D Printed Graphene Electrodes Modified with Prussian Blue: Emerging Electrochemical Sensing Platform for Peroxide Detection. ACS Applied Materials & Samp; Interfaces, 2019, 11, 35068-35078.	8.0	89
31	Electrochemical water oxidation by cobalt-Prussian blue coordination polymer and theoretical studies of the electronic structure of the active species. Dalton Transactions, 2019, 48, 4811-4822.	3.3	30
32	Niâ^'Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3Dâ€Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 5633-5641.	3.4	32
33	Preferential coordination of ruthenium complex as an electroactive self-assembled monolayer on gold substrate and its application in sensing of dopamine. Inorganic Chemistry Communication, 2019, 99, 52-59.	3.9	6
34	Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets. Sensors and Actuators B: Chemical, 2019, 281, 837-848.	7.8	99
35	3D Printed Electrodes: A New Platform for Studies of Water Oxidation. ECS Meeting Abstracts, 2019, , .	0.0	0
36	Photochemical one-pot synthesis of reduced graphene oxide/Prussian blue nanocomposite for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. Sensors and Actuators B: Chemical, 2018, 255, 2437-2447.	7.8	91

#	Article	IF	Citations
37	Use of Screenâ€printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. Electroanalysis, 2018, 30, 170-179.	2.9	33
38	Visible-Light-Driven Epoxyacylation and Hydroacylation of Olefins Using Methylene Blue/Persulfate System in Water. Journal of Organic Chemistry, 2018, 83, 8331-8340.	3.2	36
39	Electrocatalytic activity in sensing of nitrite by films produced by electropolymerization of [Fe(Br-ph-tpy) ₂] ²⁺ . Journal of Coordination Chemistry, 2017, 70, 1137-1145.	2.2	3
40	Electrocatalytic reduction of oxygen by metal coordination polymers produced from pentacyanidoferrate(II) complex. Inorganica Chimica Acta, 2017, 466, 166-173.	2.4	12
41	Improvement in Efficiency of the Electrocatalytic Reduction of Hydrogen Peroxide by Prussian Blue Produced from the [Fe(CN)5(mpz)]2-Complex. European Journal of Inorganic Chemistry, 2017, 2017, 1979-1988.	2.0	12
42	Stabilization of <i>meso</i> -tetraferrocenyl-porphyrin films by formation of composite with Prussian blue. Journal of Porphyrins and Phthalocyanines, 2017, 21, 10-15.	0.8	5
43	Quinquangulin and Rubrofusarin: A Spectroscopy Study. Orbital, 2017, 9, .	0.3	3
44	The Methylene Blue Self-aggregation in Water/Organic Solvent Mixtures: Relationship Between Solvatochromic Properties and Singlet Oxygen Production. Orbital, 2017, 9, .	0.3	8
45	Modulation of Electrochemical Properties of Graphene Oxide by Photochemical Reduction Using UV-Light Emitting Diodes. ChemistrySelect, 2016, 1, 1168-1175.	1.5	13
46	Rice Husk Reuse in the Preparation of SnO2/SiO2Nanocomposite. Materials Research, 2015, 18, 639-643.	1.3	76
47	Exploring the electrical wiring of screen-printed configurations utilised in electroanalysis. Analytical Methods, 2015, 7, 1208-1214.	2.7	42
48	Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH. Analytical Chemistry, 2015, 87, 11666-11672.	6.5	44
49	Photophysical properties of porphyrin derivatives: Influence of the alkyl chains in homogeneous and micro-heterogeneous systems. Journal of Porphyrins and Phthalocyanines, 2015, 19, 920-933.	0.8	7
50	Spectroscopic and electrochemical behavior of a supramolecular tetrapyridylporphyrin encompassing four terpyridine(oxalate)chloridoruthenium(II) complexes and its use in nitrite sensors. Inorganica Chimica Acta, 2015, 437, 127-132.	2.4	5
51	Structural and morphological investigations of \hat{l}^2 -cyclodextrin-coated silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2014, 118, 289-297.	5.0	52
52	Probing surfacea^'complex interactions with the bis(4-thienylterpyridine)iron(II) complex anchored on TiO ₂ and gold nanoparticles. Canadian Journal of Chemistry, 2014, 92, 918-924.	1.1	5
53	The use of modified electrodes by hybrid systems gold nanoparticles/Mn-porphyrin in electrochemical detection of cysteine. Synthetic Metals, 2014, 198, 335-339.	3.9	31
54	Non-innocent behavior of 1-($2\hat{a}\in^2$ -pyridylazo)-2-naphtholate coordinated to polypyridine ruthenium(II) complexes. Journal of Coordination Chemistry, 2014, 67, 3311-3323.	2.2	0

#	Article	lF	CITATIONS
55	Prussian Blue Films Produced by Pentacyanidoferrate(II) and Their Application as Active Electrochemical Layers. European Journal of Inorganic Chemistry, 2014, 2014, 5812-N5819.	2.0	13
56	Prussian Blue Films Produced by Pentacyanidoferrate(II) and Their Application as Active Electrochemical Layers. European Journal of Inorganic Chemistry, 2014, 2014, 5794-5794.	2.0	0
57	Structural and Morphological Investigations of \hat{l}^2 -Cyclodextrin-Coated Silver Nanoparticles. Microscopy and Microanalysis, 2014, 20, 2114-2115.	0.4	1
58	On the behavior of the carboxyphenylterpyridine (8-quinolinolate) thiocyanatoruthenium (II) complex as a new black dye in TiO2 solar cells modified with carboxymethyl-beta-cyclodextrin. Inorganic Chemistry Communication, 2013, 36, 35-38.	3.9	10
59	A simple method to synthesize fluorescent modified gold nanoparticles using tryptamine as the reducing and capping agent. Synthetic Metals, 2013, 185-186, 61-65.	3.9	2
60	Triangular ruthenium acetate clusters containing the bis(pyridyl)propane ligand and their inclusion chemistry with \hat{I}^2 -cyclodextrin. Transition Metal Chemistry, 2011, 36, 775-783.	1.4	2
61	Structure and morphology of spinel MFe2O4 (M=Fe, Co, Ni) nanoparticles chemically synthesized from heterometallic complexes. Journal of Colloid and Interface Science, 2011, 358, 39-46.	9.4	40
62	Singlet oxygen quantum yields $(\hat{l} d)$ in water using beetroot extract and an array of LEDs. Journal of the Brazilian Chemical Society, 2009, 20, 31-36.	0.6	31
63	Metallochlorophylls of magnesium, copper and zinc: evaluation of the influence of the first coordination sphere on their solvatochromism and aggregation properties. Journal of the Brazilian Chemical Society, 2009, 20, 1653-1658.	0.6	14
64	Probing the binding of tetraplatinum(pyridyl)porphyrin complexes to DNA by means of surface plasmon resonance. Journal of Inorganic Biochemistry, 2009, 103, 182-189.	3.5	35
65	Unravelling the Chemical Morphology of a Mesoporous Titanium Dioxide Interface by Confocal Raman Microscopy: New Clues for Improving the Efficiency of Dye Solar Cells and Photocatalysts. Langmuir, 2009, 25, 11269-11271.	3.5	30
66	Spectroscopic and electrochemical properties of iron(II) complexes of polydentate Schiff bases containing pyrazine, pyridine and imidazole groups. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 71, 1296-1301.	3.9	12
67	A theoretical study of the tautomerism and vibrational spectra of 4,5-diamine-2,6-dimercaptopyrimidine. Journal of the Brazilian Chemical Society, 2008, 19, .	0.6	7
68	Controlled Stabilization and Flocculation of Gold Nanoparticles by Means of 2-Pyrazin-2-ylethanethiol and Pentacyanidoferrate(II) Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 3356-3364.	2.0	27
69	Vibrational spectra and theoretical studies of tautomerism and hydrogen bonding in the violuric acid and 6-amino-5-nitrosouracil system. Vibrational Spectroscopy, 2007, 44, 133-141.	2.2	25
70	Selective host–guest interactions on mesoporous TiO2 films modified with carboxymethyl-β-cyclodextrin. Surface Science, 2006, 600, 4591-4597.	1.9	27
71	Performance of Water Oxidation by 3D Printed Electrodes Modified by Prussian Blue Analogues. Journal of the Brazilian Chemical Society, 0, , .	0.6	5
72	ASSEMBLY OF LOW-COST LAB-MADE PHOTOREACTOR FOR PREPARATION OF NANOMATERIALS. Quimica Nova, $0, \dots$	0.3	0

#	Article	IF	Citations
73	Incorporation of Co-based catalysts with structures similar to those of Prussian Blue on printed electrodes for application in a water oxidation study. , 0, , .		0
74	Desenvolvimento de célula para espectroeletroquÃmica Raman para estudos de mecanismo de reação em processos de oxidação de água. , 0, , .		1
75	Modification of conventional and 3D printed electrodes with $Co3[Co(CN)6]2$ catalyst for oxygen evolution reaction studies. , 0, , .		0
76	Study of water oxidation and oxygen reduction reactions by prussian blue and cnalogues compounds. , 0, , .		0
77	Desenvolvimento de eletrodos impressos em 3D modificados com Ni(OH)2 para estudos de oxidação de água. , 0, , .		0
78	Aquecimento global e solução através do uso de energia limpa., 0,,.		0
79	CONSTRUÇÃO DE EQUIPAMENTO DE BAIXO CUSTO PARA ENROLAR FILAMENTOS DE IMPRESSORAS 3D. Quimica Nova, 0, , .	0.3	0
80	Synergistic Supramolecular Effect on the Electro-Oxidation of Biological Relevant Molecules: A Novel Sensor for Simultaneous Determination of Epinephrine and Uric Acid in Human Urine Using MWCNT and a Copper(II) Complex. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
81	Is Hydrogen Indispensable for a Sustainable World? A Review of H2 Applications and Perspectives for the Next Years. Journal of the Brazilian Chemical Society, 0, , .	0.6	4