
Yipeng Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2107027/publications.pdf Version: 2024-02-01

VIDENC SUN

#	Article	IF	CITATIONS
1	Mutations in PB2 and HA are crucial for the increased virulence and transmissibility of H1N1 swine influenza virus in mammalian models. Veterinary Microbiology, 2022, 265, 109314.	0.8	7
2	p21 restricts influenza A virus by perturbing the viral polymerase complex and upregulating type I interferon signaling. PLoS Pathogens, 2022, 18, e1010295.	2.1	12
3	N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. , 2022, 1, .		6
4	Neurovirulence of Avian Influenza Virus Is Dependent on the Interaction of Viral NP Protein with FMRP in the Murine Brain. Journal of Virology, 2021, 95, .	1.5	2
5	Reassortment with Dominant Chicken H9N2 Influenza Virus Contributed to the Fifth H7N9 Virus Human Epidemic. Journal of Virology, 2021, 95, .	1.5	27
6	IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nature Microbiology, 2021, 6, 932-945.	5.9	61
7	Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology, 2021, 561, 28-35.	1.1	5
8	Mink is a highly susceptible host species to circulating human and avian influenza viruses. Emerging Microbes and Infections, 2021, 10, 472-480.	3.0	22
9	H9N2 virus-derived M1 protein promotes H5N6 virus release in mammalian cells: Mechanism of avian influenza virus inter-species infection in humans. PLoS Pathogens, 2021, 17, e1010098.	2.1	10
10	Immune Escape Adaptive Mutations in the H7N9 Avian Influenza Hemagglutinin Protein Increase Virus Replication Fitness and Decrease Pandemic Potential. Journal of Virology, 2020, 94, .	1.5	27
11	Swine MicroRNAs <i>ssc-miR-221-3p</i> and <i>ssc-miR-222</i> Restrict the Cross-Species Infection of Avian Influenza Virus. Journal of Virology, 2020, 94, .	1.5	9
12	A D200N hemagglutinin substitution contributes to antigenic changes and increased replication of avian H9N2 influenza virus. Veterinary Microbiology, 2020, 245, 108669.	0.8	3
13	Truncation of PA-X Contributes to Virulence and Transmission of H3N8 and H3N2 Canine Influenza Viruses in Dogs. Journal of Virology, 2020, 94, .	1.5	8
14	Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17204-17210.	3.3	195
15	An R195K Mutation in the PA-X Protein Increases the Virulence and Transmission of Influenza A Virus in Mammalian Hosts. Journal of Virology, 2020, 94, .	1.5	30
16	Mouse-adapted H9N2 avian influenza virus causes systemic infection in mice. Virology Journal, 2019, 16, 135.	1.4	11
17	Characterization of fowl adenovirus serotype 4 circulating in chickens in China. Veterinary Microbiology, 2019, 238, 108427.	0.8	16
18	Induction of PGRN by influenza virus inhibits the antiviral immune responses through downregulation of type I interferons signaling. PLoS Pathogens, 2019, 15, e1008062.	2.1	25

YIPENG SUN

#	Article	IF	CITATIONS
19	H3N2 canine influenza virus and Enterococcus faecalis coinfection in dogs in China. BMC Veterinary Research, 2019, 15, 113.	0.7	0
20	Infection of chicken H9N2 influenza viruses in different species of domestic ducks. Veterinary Microbiology, 2019, 233, 1-4.	0.8	12
21	Recombinant turkey herpesvirus expressing H9 hemagglutinin providing protection against H9N2 avian influenza. Virology, 2019, 529, 7-15.	1.1	30
22	Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells. Journal of General Virology, 2019, 100, 1273-1281.	1.3	27
23	The use of pyrosequencing for detection of hemagglutinin mutations associated with increased pathogenicity of H5N1 avian influenza viruses in mammals. Journal of Veterinary Diagnostic Investigation, 2018, 30, 619-622.	0.5	1
24	Cross- immunity of a H9N2 live attenuated influenza vaccine against H5N2 highly pathogenic avian influenza virus in chickens. Veterinary Microbiology, 2018, 220, 57-66.	0.8	9
25	M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China. Journal of Virology, 2017, 91, .	1.5	41
26	PA-X protein contributes to virulence of triple-reassortant H1N2 influenza virus by suppressing early immune responses in swine. Virology, 2017, 508, 45-53.	1.1	21
27	Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013. Emerging Microbes and Infections, 2017, 6, 1-11.	3.0	56
28	A Multiplex RT-PCR Assay for Detection and Differentiation of Avian-Origin Canine H3N2, Equine-Origin H3N8, Human-Origin H3N2, and H1N1/2009 Canine Influenza Viruses. PLoS ONE, 2017, 12, e0170374.	1.1	8
29	Enhanced pathogenicity and neurotropism of mouse-adapted H10N7 influenza virus are mediated by novel PB2 and NA mutations. Journal of General Virology, 2017, 98, 1185-1195.	1.3	20
30	Isolation and characterization of H4N6 avian influenza viruses from mallard ducks in Beijing, China. PLoS ONE, 2017, 12, e0184437.	1.1	2
31	Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity. Journal of Virology, 2016, 90, 8105-8114.	1.5	68
32	Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets. Journal of Virology, 2016, 90, 6235-6243.	1.5	64
33	Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine. Scientific Reports, 2016, 6, 30382.	1.6	15
34	Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Scientific Reports, 2016, 6, 21845.	1.6	18
35	Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Scientific Reports, 2016, 6, 27067.	1.6	12
36	Antigenic evolution of H9N2 chicken influenza viruses isolated in China during 2009–2013 and selection of a candidate vaccine strain with broad cross-reactivity. Veterinary Microbiology, 2016, 182, 1-7.	0.8	37

YIPENG SUN

#	Article	IF	CITATIONS
37	The infection of turkeys and chickens by reassortants derived from pandemic H1N1 2009 and avian H9N2 influenza viruses. Scientific Reports, 2015, 5, 10130.	1.6	10
38	Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 548-553.	3.3	287
39	Twenty amino acids at the C-terminus of PA-X are associated with increased influenza A virus replication and pathogenicity. Journal of General Virology, 2015, 96, 2036-2049.	1.3	54
40	H9N2 influenza virus in China: a cause of concern. Protein and Cell, 2015, 6, 18-25.	4.8	182
41	The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza viruses. Scientific Reports, 2015, 5, 8262.	1.6	69
42	Serological survey of canine H3N2, pandemic H1N1/09, and human seasonal H3N2 influenza viruses in cats in northern China, 2010–2014. Virology Journal, 2015, 12, 50.	1.4	11
43	C-terminal elongation of NS1 of H9N2 influenza virus induces a high level of inflammatory cytokines and increases transmission. Journal of General Virology, 2015, 96, 259-268.	1.3	16
44	PA-X is a virulence factor in avian H9N2 influenza virus. Journal of General Virology, 2015, 96, 2587-2594.	1.3	57
45	Cryptoporus volvatus Extract Inhibits Influenza Virus Replication In Vitro and In Vivo. PLoS ONE, 2014, 9, e113604.	1.1	20
46	Naturally Occurring Mutations in the PA Gene Are Key Contributors to Increased Virulence of Pandemic H1N1/09 Influenza Virus in Mice. Journal of Virology, 2014, 88, 4600-4604.	1.5	36
47	Hemagglutinin mutation D222N of the 2009 pandemic H1N1 influenza virus alters receptor specificity without affecting virulence in mice. Virus Research, 2014, 189, 79-86.	1.1	9
48	Influenza A Virus Acquires Enhanced Pathogenicity and Transmissibility after Serial Passages in Swine. Journal of Virology, 2014, 88, 11981-11994.	1.5	24
49	A serological survey of canine H3N2, pandemic H1N1/09 and human seasonal H3N2 influenza viruses in dogs in China. Veterinary Microbiology, 2014, 168, 193-196.	0.8	32
50	ldentification and characterization of avian-origin H3N2 canine influenza viruses in northern China during 2009–2010. Virology, 2013, 435, 301-307.	1.1	34
51	Amino Acid 316 of Hemagglutinin and the Neuraminidase Stalk Length Influence Virulence of H9N2 Influenza Virus in Chickens and Mice. Journal of Virology, 2013, 87, 2963-2968.	1.5	70
52	Natural and experimental infection of dogs with pandemic H1N1/2009 influenza virus. Journal of General Virology, 2012, 93, 119-123.	1.3	72
53	Evaluation of the protective efficacy of a commercial vaccine against different antigenic groups of H9N2 influenza viruses in chickens. Veterinary Microbiology, 2012, 156, 193-199.	0.8	53
54	High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4164-4169.	3.3	158

#	Article	IF	CITATIONS
55	Genotypic evolution and antigenic drift of H9N2 influenza viruses in China from 1994 to 2008. Veterinary Microbiology, 2010, 146, 215-225.	0.8	134
56	Guinea Pig Model for Evaluating the Potential Public Health Risk of Swine and Avian Influenza Viruses. PLoS ONE, 2010, 5, e15537.	1.1	46