
Xosé R Bustelo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overexpression of wild type RRAS2, without oncogenic mutations, drives chronic lymphocytic leukemia. Molecular Cancer, 2022, 21, 35.	7.9	11
2	A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Reports, 2022, 38, 110522.	2.9	7
3	The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. Oncogene, 2022, 41, 3341-3354.	2.6	3
4	Nuclear Vav3 is required for polycomb repression complex-1 activity in B-cell lymphoblastic leukemogenesis. Nature Communications, 2022, 13, .	5.8	3
5	Functional Specificity of the Members of the Sos Family of Ras-GEF Activators: Novel Role of Sos2 in Control of Epidermal Stem Cell Homeostasis. Cancers, 2021, 13, 2152.	1.7	7
6	Distinct Roles of Vav Family Members in Adaptive and Innate Immune Models of Arthritis. Biomedicines, 2021, 9, 695.	1.4	1
7	Loss of Aryl Hydrocarbon Receptor Favors K-RasG12D-Driven Non-Small Cell Lung Cancer. Cancers, 2021, 13, 4071.	1.7	7
8	Efficient fractionation and analysis of ribosome assembly intermediates in human cells. RNA Biology, 2021, 18, 182-197.	1.5	5
9	New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System. Biology, 2021, 10, 857.	1.3	7
10	Cancerâ€∎ssociated mutations in <i>VAV1</i> trigger variegated signaling outputs and Tâ€cell lymphomagenesis. EMBO Journal, 2021, 40, e108125.	3.5	12
11	Rho GTPases in Skeletal Muscle Development and Homeostasis. Cells, 2021, 10, 2984.	1.8	15
12	Rho guanosine nucleotide exchange factors are not such bad guys after all in cancer ^a . Small GTPases, 2020, 11, 233-239.	0.7	9
13	Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis. Nature Communications, 2020, 11, 156.	5.8	19
14	Vav2 catalysis-dependent pathways contribute to skeletal muscle growth and metabolic homeostasis. Nature Communications, 2020, 11, 5808.	5.8	17
15	VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nature Communications, 2020, 11, 4788.	5.8	27
16	Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers, 2020, 12, 2593.	1.7	26
17	Drug Vulnerabilities and Disease Prognosis Linked to the Stem Cell-Like Gene Expression Program Triggered by the RHO GTPase Activator VAV2 in Hyperplastic Keratinocytes and Head and Neck Cancer. Cancers, 2020, 12, 2498.	1.7	6
18	Vav2 pharmaco-mimetic mice reveal the therapeutic value and caveats of the catalytic inactivation of a Rho exchange factor. Oncogene, 2020, 39, 5098-5111.	2.6	10

#	Article	IF	CITATIONS
19	Lysine Acetylation Reshapes the Downstream Signaling Landscape of Vav1 in Lymphocytes. Cells, 2020, 9, 609.	1.8	6
20	Computational and in vitro Pharmacodynamics Characterization of 1A-116 Rac1 Inhibitor: Relevance of Trp56 in Its Biological Activity. Frontiers in Cell and Developmental Biology, 2020, 8, 240.	1.8	7
21	HERC Ubiquitin Ligases in Cancer. Cancers, 2020, 12, 1653.	1.7	20
22	In Silico Analysis of the Age-Dependent Evolution of the Transcriptome of Mouse Skin Stem Cells. Cells, 2020, 9, 165.	1.8	4
23	Vav proteins maintain epithelial traits in breast cancer cells using miR-200c-dependent and independent mechanisms. Oncogene, 2019, 38, 209-227.	2.6	11
24	YES1 Drives Lung Cancer Growth and Progression and Predicts Sensitivity to Dasatinib. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 888-899.	2.5	50
25	The Vav GEF Family: An Evolutionary and Functional Perspective. Cells, 2019, 8, 465.	1.8	48
26	Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells, 2019, 8, 1649.	1.8	8
27	Vagal afferents contribute to sympathoexcitation-driven metabolic dysfunctions. Journal of Endocrinology, 2019, 240, 483-496.	1.2	7
28	New insights into the Vav1 activation cycle in lymphocytes. Cellular Signalling, 2018, 45, 132-144.	1.7	15
29	An unexpected tumor suppressor role for VAV1 ^a . Molecular and Cellular Oncology, 2018, 5, e1432257.	0.3	1
30	Ribosome biogenesis and cancer: basic and translational challenges. Current Opinion in Genetics and Development, 2018, 48, 22-29.	1.5	57
31	Editorial overview: New concepts and experimental approaches to understand development, tissue regeneration, and human disease. Current Opinion in Cell Biology, 2018, 55, iii-v.	2.6	Ο
32	RAS at the Golgi antagonizes malignant transformation through PTPRÎ⁰-mediated inhibition of ERK activation. Nature Communications, 2018, 9, 3595.	5.8	18
33	CANCERTOOL: A Visualization and Representation Interface to Exploit Cancer Datasets. Cancer Research, 2018, 78, 6320-6328.	0.4	76
34	R-Ras2 is required for germinal center formation to aid B cells during energetically demanding processes. Science Signaling, 2018, 11, .	1.6	24
35	Differential Role of the RasCEFs Sos1 and Sos2 in Mouse Skin Homeostasis and Carcinogenesis. Molecular and Cellular Biology, 2018, 38, .	1.1	18
36	RAS GTPase-dependent pathways in developmental diseases: old guys, new lads, and current challenges. Current Opinion in Cell Biology, 2018, 55, 42-51.	2.6	18

Xosé R Bustelo

#	Article	IF	CITATIONS
37	Protein–Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends in Cancer, 2018, 4, 616-633.	3.8	44
38	Vav3-induced cytoskeletal dynamics contribute to heterotypic properties of endothelial barriers. Journal of Cell Biology, 2018, 217, 2813-2830.	2.3	22
39	RHO GTPases in cancer: known facts, open questions, and therapeutic challenges. Biochemical Society Transactions, 2018, 46, 741-760.	1.6	58
40	Vav Family. , 2018, , 5892-5906.		0
41	Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 764-769.	3.3	100
42	Focal accumulation of preribosomes outside the nucleolus during metaphase–anaphase in budding yeast. Rna, 2017, 23, 1432-1443.	1.6	1
43	A Paradoxical Tumor-Suppressor Role for the Rac1 Exchange Factor Vav1 in T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2017, 32, 608-623.e9.	7.7	33
44	Lung regeneration after toxic injury is improved in absence of dioxin receptor. Stem Cell Research, 2017, 25, 61-71.	0.3	21
45	Plk1 regulates contraction of postmitotic smooth muscle cells and is required for vascular homeostasis. Nature Medicine, 2017, 23, 964-974.	15.2	44
46	H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences. Cancer Research, 2017, 77, 707-718.	0.4	21
47	Characterization of Novel Molecular Mechanisms Favoring Rac1 Membrane Translocation. PLoS ONE, 2016, 11, e0166715.	1.1	10
48	Vav Proteins Are Key Regulators of Card9 Signaling for Innate Antifungal Immunity. Cell Reports, 2016, 17, 2572-2583.	2.9	66
49	VAV1 Activating Mutations and Translocations in Peripheral T-Cell Lymphomas. Blood, 2016, 128, 2741-2741.	0.6	1
50	Identification of a Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nature Neuroscience, 2015, 18, 1084-1093.	7.1	37
51	Immunosuppression-Independent Role of Regulatory T Cells against Hypertension-Driven Renal Dysfunctions. Molecular and Cellular Biology, 2015, 35, 3528-3546.	1.1	26
52	The disease-linked Glu-26-Lys mutant version of Coronin 1A exhibits pleiotropic and pathway-specific signaling defects. Molecular Biology of the Cell, 2015, 26, 2895-2912.	0.9	4
53	Upregulation of Vav3 Is Required for Leukemogenesis By BCR-ABL through Polycomb Repression Complex Dependent De-Repression of the Cdkn2a Locus. Blood, 2015, 126, 3661-3661.	0.6	0
54	Vav family exchange factors: an integrated regulatory and functional view. Small GTPases, 2014, 5, e973757.	0.7	121

#	Article	IF	CITATIONS
55	Coronin1 Proteins Dictate Rac1 Intracellular Dynamics and Cytoskeletal Output. Molecular and Cellular Biology, 2014, 34, 3388-3406.	1.1	13
56	K-Ras ^{V14I} recapitulates Noonan syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16395-16400.	3.3	67
57	New Avenue to Inhibit Ras Signaling. Chemistry and Biology, 2014, 21, 1599-1600.	6.2	2
58	The C-Terminal SH3 Domain Contributes to the Intramolecular Inhibition of Vav Family Proteins. Science Signaling, 2014, 7, ra35.	1.6	41
59	VAV3 mediates resistance to breast cancer endocrine therapy. Breast Cancer Research, 2014, 16, R53.	2.2	28
60	Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nature Communications, 2014, 5, 3881.	5.8	28
61	Genetic Dissection of the Vav2-Rac1 Signaling Axis in Vascular Smooth Muscle Cells. Molecular and Cellular Biology, 2014, 34, 4404-4419.	1.1	26
62	Chronic Sympathoexcitation through Loss of Vav3, a Rac1 Activator, Results in Divergent Effects on Metabolic Syndrome and Obesity Depending on Diet. Cell Metabolism, 2013, 18, 199-211.	7.2	24
63	The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carcinogenesis, 2013, 34, 2683-2693.	1.3	63
64	The Rho Exchange Factors Vav2 and Vav3 Favor Skin Tumor Initiation and Promotion by Engaging Extracellular Signaling Loops. PLoS Biology, 2013, 11, e1001615.	2.6	64
65	Role of Src Homology Domain Binding in Signaling Complexes Assembled by the Murid γ-Herpesvirus M2 Protein. Journal of Biological Chemistry, 2013, 288, 3858-3870.	1.6	11
66	Reduction of NADPH-Oxidase Activity Ameliorates the Cardiovascular Phenotype in a Mouse Model of Williams-Beuren Syndrome. PLoS Genetics, 2012, 8, e1002458.	1.5	29
67	Rac-ing to the plasma membrane. Small GTPases, 2012, 3, 60-66.	0.7	42
68	The Ras-like protein R-Ras2/TC21 is important for proper mammary gland development. Molecular Biology of the Cell, 2012, 23, 2373-2387.	0.9	25
69	Vav3 collaborates with p190-BCR-ABL in lymphoid progenitor leukemogenesis, proliferation, and survival. Blood, 2012, 120, 800-811.	0.6	43
70	Expression of VAV1 in the tumour microenvironment of glioblastoma multiforme. Journal of Neuro-Oncology, 2012, 110, 69-77.	1.4	12
71	The Rho Exchange Factors Vav2 and Vav3 Control a Lung Metastasis–Specific Transcriptional Program in Breast Cancer Cells. Science Signaling, 2012, 5, ra71.	1.6	98
72	Intratumoral stages of metastatic cells: A synthesis of ontogeny, Rho/Rac GTPases, epithelialâ€mesenchymal transitions, and more. BioEssays, 2012, 34, 748-759.	1.2	18

#	Article	IF	CITATIONS
73	Abstract 2147: The RRas2/TC21 GTPase is essential for breast tumorigenesis and lung metastasis. , 2012, , .		1
74	T Cell Receptor Internalization from the Immunological Synapse Is Mediated by TC21 and RhoG GTPase-Dependent Phagocytosis. Immunity, 2011, 35, 208-222.	6.6	152
75	Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5015-5020.	3.3	61
76	Transcriptional Factor Aryl Hydrocarbon Receptor (Ahr) Controls Cardiovascular and Respiratory Functions by Regulating the Expression of the Vav3 Proto-oncogene. Journal of Biological Chemistry, 2011, 286, 2896-2909.	1.6	57
77	Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO Journal, 2011, 30, 3913-3927.	3.5	69
78	Vav3 Is Involved in GABAergic Axon Guidance Events Important for the Proper Function of Brainstem Neurons Controlling Cardiovascular, Respiratory, and Renal Parameters. Molecular Biology of the Cell, 2010, 21, 4251-4263.	0.9	30
79	Vav3-deficient Mice Exhibit a Transient Delay in Cerebellar Development. Molecular Biology of the Cell, 2010, 21, 1125-1139.	0.9	37
80	A transcriptional cross–talk between RhoA and c–Myc inhibits the RhoA/Rock–dependent cytoskeleton. Small GTPases, 2010, 1, 69-74.	0.7	9
81	A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene, 2010, 29, 3781-3792.	2.6	28
82	The Rho/Rac exchange factor Vav2 controls nitric oxide–dependent responses in mouse vascular smooth muscle cells. Journal of Clinical Investigation, 2010, 120, 315-330.	3.9	57
83	The Dioxin Receptor Regulates the Constitutive Expression of the <i>Vav3</i> Proto-Oncogene and Modulates Cell Shape and Adhesion. Molecular Biology of the Cell, 2009, 20, 1715-1727.	0.9	72
84	Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nature Immunology, 2009, 10, 880-888.	7.0	110
85	Conformational rearrangements upon Syk auto-phosphorylation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1211-1217.	1.1	19
86	Wound healing defect of Vav3â^'/â^' mice due to impaired β2-integrin–dependent macrophage phagocytosis of apoptotic neutrophils. Blood, 2009, 113, 5266-5276.	0.6	62
87	The Use of Knockout Mice Reveals a Synergistic Role of the Vav1 and Rasgrf2 Gene Deficiencies in Lymphomagenesis and Metastasis. PLoS ONE, 2009, 4, e8229.	1.1	23
88	Identification of the Rock-dependent transcriptome in rodent fibroblasts. Clinical and Translational Oncology, 2008, 10, 726-738.	1.2	18
89	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	9.4	155
90	Role of chimaerins, a group of Rac-specific GTPase activating proteins, in T-cell receptor signaling. Cellular Signalling, 2008, 20, 758-770.	1.7	24

#	Article	IF	CITATIONS
91	CD147 Inhibits the Nuclear Factor of Activated T-cells by Impairing Vav1 and Rac1 Downstream Signaling. Journal of Biological Chemistry, 2008, 283, 5554-5566.	1.6	37
92	Mechanistic Analysis of the Amplification and Diversification Events Induced by Vav Proteins in B-lymphocytes. Journal of Biological Chemistry, 2008, 283, 36454-36464.	1.6	20
93	A mouse model for Costello syndrome reveals an Ang Il–mediated hypertensive condition. Journal of Clinical Investigation, 2008, 118, 2169-79.	3.9	97
94	The Gammaherpesvirus m2 Protein Manipulates the Fyn/Vav Pathway through a Multidocking Mechanism of Assembly. PLoS ONE, 2008, 3, e1654.	1.1	29
95	RasGRF2, a Guanosine Nucleotide Exchange Factor for Ras GTPases, Participates in T-Cell Signaling Responses. Molecular and Cellular Biology, 2007, 27, 8127-8142.	1.1	61
96	The 90S Preribosome Is a Multimodular Structure That Is Assembled through a Hierarchical Mechanism. Molecular and Cellular Biology, 2007, 27, 5414-5429.	1.1	155
97	Specific Phosphorylation of p120-Catenin Regulatory Domain Differently Modulates Its Binding to RhoA. Molecular and Cellular Biology, 2007, 27, 1745-1757.	1.1	96
98	Persistent activation of Rac1 in squamous carcinomas of the head and neck: evidence for an EGFR/Vav2 signaling axis involved in cell invasion. Carcinogenesis, 2007, 28, 1145-1152.	1.3	98
99	Loss of Vav2 Proto-Oncogene Causes Tachycardia and Cardiovascular Disease in Mice. Molecular Biology of the Cell, 2007, 18, 943-952.	0.9	62
100	GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. BioEssays, 2007, 29, 356-370.	1.2	554
101	3D structure of Syk kinase determined by single-particle electron microscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 1493-1499.	1.1	21
102	Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases. Oncogene, 2007, 26, 4295-4305.	2.6	39
103	Transcriptomal profiling of site-specific Ras signals. Cellular Signalling, 2007, 19, 2264-2276.	1.7	26
104	Overexpression of the VAV proto-oncogene product is associated with B-cell chronic lymphocytic leukaemia displaying loss on 13q. British Journal of Haematology, 2006, 133, 642-645.	1.2	32
105	Vav3 proto-oncogene deficiency leads to sympathetic hyperactivity and cardiovascular dysfunction. Nature Medicine, 2006, 12, 841-845.	15.2	109
106	Involvement of the Rho/Rac family member RhoG in caveolar endocytosis. Oncogene, 2006, 25, 2961-2973.	2.6	42
107	Azathioprine Suppresses Ezrin-Radixin-Moesin-Dependent T Cell-APC Conjugation through Inhibition of Vav Guanosine Exchange Activity on Rac Proteins. Journal of Immunology, 2006, 176, 640-651.	0.4	182
108	Activation of Vav/Rho GTPase Signaling by CXCL12 Controls Membrane-Type Matrix Metalloproteinase–Dependent Melanoma Cell Invasion. Cancer Research, 2006, 66, 248-258.	0.4	119

#	Article	IF	CITATIONS
109	Activation of Vav by the Gammaherpesvirus M2 Protein Contributes to the Establishment of Viral Latency in B Lymphocytes. Journal of Virology, 2006, 80, 6123-6135.	1.5	45
110	Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood, 2005, 105, 3026-3034.	0.6	65
111	Global conformational rearrangements during the activation of the GDP/GTP exchange factor Vav3. EMBO Journal, 2005, 24, 1330-1340.	3.5	41
112	Vav1 and Rac Control Chemokine-promoted T Lymphocyte Adhesion Mediated by the Integrin α4β1. Molecular Biology of the Cell, 2005, 16, 3223-3235.	0.9	89
113	Phylogenetic conservation of the regulatory and functional properties of the Vav oncoprotein family. Experimental Cell Research, 2005, 308, 364-380.	1.2	22
114	Signaling through the Leukocyte Integrin LFA-1 in T Cells Induces a Transient Activation of Rac-1 That Is Regulated by Vav and PI3K/Akt-1. Journal of Biological Chemistry, 2004, 279, 16194-16205.	1.6	58
115	Functional Characterization of Pwp2, a WD Family Protein Essential for the Assembly of the 90 S Pre-ribosomal Particle. Journal of Biological Chemistry, 2004, 279, 37385-37397.	1.6	76
116	F-actin-dependent Translocation of the Rap1 GDP/GTP Exchange Factor RasGRP2. Journal of Biological Chemistry, 2004, 279, 20435-20446.	1.6	50
117	Inverted signaling hierarchy between RAS and RAC in T-lymphocytes. Oncogene, 2004, 23, 5823-5833.	2.6	41
118	Vav mediates Ras stimulation by direct activation of the GDP/GTP exchange factor Ras GRP1. EMBO Journal, 2003, 22, 3326-3336.	3.5	68
119	Structural Basis for the Signaling Specificity of RhoG and Rac1 GTPases. Journal of Biological Chemistry, 2003, 278, 37916-37925.	1.6	34
120	Rac1 Function Is Required for Src-induced Transformation. Journal of Biological Chemistry, 2003, 278, 34339-34346.	1.6	149
121	Exchange Factors of the RasGRP Family Mediate Ras Activation in the Golgi. Journal of Biological Chemistry, 2003, 278, 33465-33473.	1.6	130
122	Structural Determinants for the Biological Activity of Vav Proteins. Journal of Biological Chemistry, 2002, 277, 45377-45392.	1.6	112
123	Regulation of Vav proteins by intramolecular events. Frontiers in Bioscience - Landmark, 2002, 7, d24-30.	3.0	38
124	Understanding Rho/Rac biology in T-cells using animal models. BioEssays, 2002, 24, 602-612.	1.2	23
125	Knocked out by Rho/Rac T-cell biology. Histology and Histopathology, 2002, 17, 871-5.	0.5	7
126	Vav proteins, adaptors and cell signaling. Oncogene, 2001, 20, 6372-6381.	2.6	195

Xosé R Bustelo

#	Article	IF	CITATIONS
127	How Vav proteins discriminate the GTPases Rac1 and RhoA from Cdc42. Oncogene, 2001, 20, 8057-8065.	2.6	64
128	Rac1 mediates STAT3 activation by autocrine IL-6. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9014-9019.	3.3	140
129	Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 179-184.	3.3	410
130	Tyrosine Phosphorylation Mediates Both Activation and Downmodulation of the Biological Activity of Vav. Molecular and Cellular Biology, 2000, 20, 1678-1691.	1.1	148
131	Regulatory and Signaling Properties of the Vav Family. Molecular and Cellular Biology, 2000, 20, 1461-1477.	1.1	465
132	Biological and Regulatory Properties of Vav-3, a New Member of the Vav Family of Oncoproteins. Molecular and Cellular Biology, 1999, 19, 7870-7885.	1.1	247
133	Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins. Oncogene, 1999, 18, 5860-5869.	2.6	47
134	S. typhimurium Encodes an Activator of Rho GTPases that Induces Membrane Ruffling and Nuclear Responses in Host Cells. Cell, 1998, 93, 815-826.	13.5	764
135	Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO Journal, 1998, 17, 6608-6621.	3.5	239
136	The Vav–Rac1 Pathway in Cytotoxic Lymphocytes Regulates the Generation of Cell-mediated Killing. Journal of Experimental Medicine, 1998, 188, 549-559.	4.2	165
137	Tyrosine Phosphorylation of the vav Proto-oncogene Product Links FcεRI to the Rac1-JNK Pathway. Journal of Biological Chemistry, 1997, 272, 10751-10755.	1.6	106
138	Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation. Oncogene, 1997, 15, 2511-2520.	2.6	87
139	Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature, 1997, 385, 169-172.	13.7	736
140	The VAV Family of Signal Transduction Molecules. Critical Reviews in Oncogenesis, 1996, 7, 65-88.	0.2	65
141	The TC21 oncoprotein interacts with the Ral guanosine nucleotide dissociation factor. Oncogene, 1996, 12, 463-70.	2.6	31
142	Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene, 1996, 13, 363-71.	2.6	128
143	Rac-1 dependent stimulation of the JNK/SAPK signaling pathway by Vav. Oncogene, 1996, 13, 455-60.	2.6	139
144	Association of the <i>vav</i> proto-oncogene product with poly(rC)-specific RNA-binding proteins. Molecular and Cellular Biology, 1995, 15, 1324-1332.	1.1	92

#	Article	IF	CITATIONS
145	The K Protein Domain That Recruits the Interleukin 1-responsive K Protein Kinase Lies Adjacent to a Cluster of c-Src and Vav SH3-binding Sites. Journal of Biological Chemistry, 1995, 270, 26976-26985.	1.6	104
146	Lack of evidence for the activation of the Ras/Raf mitogenic pathway by 14-3-3 proteins in mammalian cells. Oncogene, 1995, 11, 825-31.	2.6	35
147	Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav Molecular and Cellular Biology, 1994, 14, 2777-2785.	1.1	911
148	Specific Motifs Recognized by the SH2 Domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Molecular and Cellular Biology, 1994, 14, 2777-2785.	1.1	342
149	Vav cooperates with Ras to transform rodent fibroblasts but is not a Ras GDP/GTP exchange factor. Oncogene, 1994, 9, 2405-13.	2.6	77
150	Zinc finger domains and phorbol ester pharmacophore. Analysis of binding to mutated form of protein kinase C zeta and the vav and c-raf proto-oncogene products. Journal of Biological Chemistry, 1994, 269, 11590-4.	1.6	99
151	Transcript levels of thymosin β4, an actin-sequestering peptide, in cell proliferation. Biochimica Et Biophysica Acta - Molecular Cell Research, 1993, 1176, 59-63.	1.9	19
152	Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors Molecular and Cellular Biology, 1993, 13, 5500-5512.	1.1	101
153	Molecular Cloning of the Mouse <i>grb2</i> Gene: Differential Interaction of the Grb2 Adaptor Protein with Epidermal Growth Factor and Nerve Growth Factor Receptors. Molecular and Cellular Biology, 1993, 13, 5500-5512.	1.1	36
154	Developmental expression of the vav protooncogene. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1993, 4, 297-308.	0.8	30
155	Tyrosine Phosphorylation of the vav Proto-Oncogene Product in Activated B Cells. Science, 1992, 256, 1196-1199.	6.0	206
156	Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature, 1992, 356, 68-71.	13.7	320
157	Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells. Journal of Biological Chemistry, 1992, 267, 18021-5.	1.6	100
158	Cytochrome c oxidase subunit II mRNA levels during T-lymphocyte proliferation and liver regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1092, 184-187.	1.9	5
159	Expression of the rat prothymosin alpha gene during T-lymphocyte proliferation and liver regeneration. Journal of Biological Chemistry, 1991, 266, 1443-1447.	1.6	65
160	Expression of the rat prothymosin alpha gene during T-lymphocyte proliferation and liver regeneration. Journal of Biological Chemistry, 1991, 266, 1443-7.	1.6	54
161	Isolation and characterization of thymosin β9Met from pork spleen. Archives of Biochemistry and Biophysics, 1989, 273, 396-402.	1.4	46
162	The levels of cytochrome c oxidase subunit II mRNA change during the rat T-cell development. Biochimica Et Biophysica Acta - Bioenergetics, 1989, 977, 341-343.	0.5	2

#	Article	IF	CITATIONS
163	The Expression of Prothymosin $\hat{I}\pm$ Gene in T Lymphocytes and Leukemic Lymphoid Cells Is Tied To Lymphocyte Proliferation. Journal of Biological Chemistry, 1989, 264, 8451-8454.	1.6	114
164	Thymosin-beta 4 gene. Preliminary characterization and expression in tissues, thymic cells, and lymphocytes. Journal of Immunology, 1989, 143, 2740-4.	0.4	35
165	The expression of prothymosin alpha gene in T lymphocytes and leukemic lymphoid cells is tied to lymphocyte proliferation. Journal of Biological Chemistry, 1989, 264, 8451-4.	1.6	109