
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106759/publications.pdf Version: 2024-02-01

YONCHIN PENC

#	Article	IF	CITATIONS
1	The interaction of frothers with hydrophobic and hydrophilic sites of coal particles in NaCl solution. Powder Technology, 2022, 396, 378-384.	2.1	4
2	The roles of lead ions in restoring the floatability of pyrite depressed by free cyanide. Minerals Engineering, 2022, 175, 107289.	1.8	1
3	Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion. Minerals Engineering, 2022, 177, 107387.	1.8	10
4	Flotation behaviour in reflux flotation cell – A critical review. Minerals Engineering, 2022, 181, 107519.	1.8	16
5	Electrochemical and surface properties of sulphidised molybdate minerals. Applied Surface Science, 2022, 592, 153358.	3.1	1
6	The development of a novel type of microelectrodes to evaluate the reactivity of fine sulphide mineral particles. Minerals Engineering, 2022, 183, 107595.	1.8	2
7	Foaming and aggregation behaviours of polyethylene oxide and polyacrylamide in inhibiting mechanical entrainment of kaolinite in flotation using saline water. Journal of Molecular Liquids, 2022, 359, 119299.	2.3	5
8	Sulphidisation of oxides and oxidised sulphides and adsorption of thiol collectors on the sulphidised products-a critical review. Advances in Colloid and Interface Science, 2022, 305, 102697.	7.0	4
9	Selective inhibition of kaolinite entrainment during chalcopyrite flotation in saline water. Minerals Engineering, 2022, 184, 107637.	1.8	5
10	Physically emulsifying oily collectors to produce optimal droplet sizes for flotation. Minerals Engineering, 2022, 184, 107641.	1.8	7
11	Limitations of conventional sulphidisation in restoring the floatability of oxidised chalcocite. Minerals Engineering, 2022, 185, 107683.	1.8	0
12	The interactions of radioactive lead with sulphide minerals. Applied Surface Science, 2021, 538, 148141.	3.1	4
13	The Formation and Stabilization of Oily Collector Emulsions – A Critical Review. Mineral Processing and Extractive Metallurgy Review, 2021, 42, 388-405.	2.6	10
14	A New Approach to Selectively Reject Naturally Hydrophobic Gangue in the Flotation of Base Metal Sulphide Minerals. Mining, Metallurgy and Exploration, 2021, 38, 713-720.	0.4	1
15	The Potential of Modified Starches as Mineral Flotation Depressants. Mining, Metallurgy and Exploration, 2021, 38, 739-750.	0.4	6
16	Preface to the MME Special Focus Issue on Managing Gangue Minerals. Mining, Metallurgy and Exploration, 2021, 38, 669-671.	0.4	5
17	Evaluating the sulphidisation and flotation of oxidised chalcopyrite. Minerals Engineering, 2021, 164, 106816.	1.8	11
18	The adsorption and orientation of frother surfactants on heterogeneous wetting surfaces. Applied Surface Science, 2021, 548, 149225.	3.1	18

#	Article	IF	CITATIONS
19	The effect of oxidized starches on chalcopyrite flotation. Minerals Engineering, 2021, 165, 106749.	1.8	7
20	The depression of molybdenite flotation by sodium metabisulphite in fresh water and seawater. Minerals Engineering, 2021, 168, 106939.	1.8	13
21	Comparing lead and copper activation on pyrite with different degrees of surface oxidation. Minerals Engineering, 2021, 168, 106926.	1.8	8
22	Adsorption and morphology of oxidized starches on graphite. Minerals Engineering, 2021, 168, 106936.	1.8	4
23	Deaeration of stable coal froth by surfactants to modify the interfacial properties. Fuel, 2021, 298, 120839.	3.4	3
24	The removal of lead from chalcopyrite surfaces in relation to radionuclide removal from copper minerals. Powder Technology, 2021, 389, 63-74.	2.1	1
25	Selectively Depress Copper-Activated Pyrite in Copper Flotation at Slightly Alkaline pH. Mining, Metallurgy and Exploration, 2021, 38, 751-762.	0.4	1
26	Destabilising persistent coal froth using silicone oil. International Journal of Mining Science and Technology, 2021, , .	4.6	10
27	The critical degree of mineral surface oxidation in copper sulphide flotation. Minerals Engineering, 2020, 145, 106075.	1.8	33
28	The interaction between grinding media and collector in pyrite flotation at neutral and slightly acidic pH. Minerals Engineering, 2020, 145, 106063.	1.8	22
29	The differential depression of an oxidized starch on the flotation of chalcopyrite and graphite. Minerals Engineering, 2020, 146, 106114.	1.8	27
30	The effect of sodium hydrosulfide on molybdenite flotation in seawater and diluted seawater. Minerals Engineering, 2020, 158, 106589.	1.8	19
31	The formation of iron sulphide on oxidised pyrite during sulphidisation and subsequent interactions with xanthate. Minerals Engineering, 2020, 157, 106564.	1.8	6
32	A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants. Minerals Engineering, 2020, 156, 106532.	1.8	22
33	Re-evaluating the sulphidisation reaction on malachite surface through electrochemical and cryo XPS studies. Applied Surface Science, 2020, 531, 147334.	3.1	16
34	The effect of aliphatic alcohol frothers on the dispersion of oily collector. Minerals Engineering, 2020, 157, 106552.	1.8	8
35	The effect of polyglycol-type frothers on the interfacial characteristics of oily collector dispersion. Minerals Engineering, 2020, 157, 106579.	1.8	4
36	Recovery of Ultra-Fine Tungsten and Tin from Slimes Using Large-Scale SLon-2400 Centrifugal Separator. Minerals (Basel, Switzerland), 2020, 10, 694.	0.8	2

#	Article	IF	CITATIONS
37	Lead adsorption on copper sulphides and the relevance to its contamination in copper concentrates. Minerals Engineering, 2020, 154, 106381.	1.8	11
38	The critical degree of bornite surface oxidation in flotation. Minerals Engineering, 2020, 155, 106445.	1.8	8
39	The interaction of grinding media and collector in pyrite flotation at alkaline pH. Minerals Engineering, 2020, 152, 106344.	1.8	24
40	The interaction between kaolinite and saline water in affecting the microstructure, rheology and settling of coal flotation products. Powder Technology, 2020, 372, 76-83.	2.1	6
41	Starch chemical modification for selective flotation of copper sulphide minerals from carbonaceous material: A critical review. Minerals Engineering, 2020, 156, 106522.	1.8	17
42	The effect of sodium hydrosulfide on molybdenite flotation as a depressant of copper sulfides. Minerals Engineering, 2020, 148, 106203.	1.8	28
43	Effects of froth properties on dewatering of flotation products– A critical review. Minerals Engineering, 2020, 155, 106477.	1.8	3
44	The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water. Minerals Engineering, 2019, 142, 105921.	1.8	26
45	The effect of gold coupling on the surface properties of pyrite in the presence of ferric ions. Applied Surface Science, 2019, 488, 277-283.	3.1	15
46	Mitigating the coating of fine quartz in fluorite flotation using a triblock copolymer. Minerals Engineering, 2019, 136, 81-88.	1.8	8
47	Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon. Results in Physics, 2019, 12, 1050-1055.	2.0	24
48	Mineral phase and structure changes during roasting of fine-grained carbonaceous gold ores and their effects on gold leaching efficiency. Chinese Journal of Chemical Engineering, 2019, 27, 1184-1190.	1.7	28
49	The effect of saline water on the settling of coal slurry and coal froth. Powder Technology, 2019, 344, 161-168.	2.1	16
50	The interaction between diesel and surfactant Triton X-100 and their adsorption on coal surfaces with different degrees of oxidation. Powder Technology, 2019, 342, 840-847.	2.1	50
51	The effect of saline water on copper activation of pyrite in chalcopyrite flotation. Minerals Engineering, 2019, 131, 336-341.	1.8	30
52	Managing clay minerals in froth flotation—A critical review. Mineral Processing and Extractive Metallurgy Review, 2018, 39, 289-307.	2.6	65
53	The galvanic interaction between chalcopyrite and pyrite in the presence of lignosulfonate-based biopolymers and its effects on flotation performance. Minerals Engineering, 2018, 122, 91-98.	1.8	48
54	The effect of saline water on the critical degree of coal surface oxidation for coal flotation. Minerals Engineering, 2018, 119, 222-227.	1.8	28

#	Article	IF	CITATIONS
55	The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering, 2018, 119, 93-98.	1.8	58
56	The effect of froth on the dewatering of coals – An oscillatory rheology study. Fuel, 2018, 222, 362-369.	3.4	17
57	The adsorption behavior of surfactants on mineral surfaces in the presence of electrolytes – A critical review. Minerals Engineering, 2018, 121, 66-76.	1.8	89
58	The galvanic interaction between gold and pyrite in the presence of ferric ions. Minerals Engineering, 2018, 119, 236-243.	1.8	10
59	Mitigating the negative effects of clay minerals on gold flotation by a lignosulfonate-based biopolymer. Minerals Engineering, 2018, 126, 9-15.	1.8	21
60	Predicting the degree of surface oxidation on fine coals by measuring the oxygen transfer rate in coal suspensions. Fuel Processing Technology, 2017, 159, 313-319.	3.7	21
61	The surface properties of pyrite coupled with gold in the presence of oxygen. Minerals Engineering, 2017, 111, 131-139.	1.8	35
62	Surface properties of fractured and polished pyrite in relation to flotation. Minerals Engineering, 2017, 101, 10-19.	1.8	44
63	The interaction between copper species and pyrite surfaces in copper cyanide solutions. International Journal of Mineral Processing, 2017, 158, 85-92.	2.6	11
64	Understanding and improving the flotation of coals with different degrees of surface oxidation. Powder Technology, 2017, 321, 190-196.	2.1	35
65	The effect of amorphous silica on pulp rheology and copper flotation. Minerals Engineering, 2017, 113, 41-46.	1.8	26
66	An impedance spectroscopy study on the mitigation of clay slime coatings on chalcocite by electrolytes. Minerals Engineering, 2017, 101, 40-46.	1.8	7
67	The mechanism responsible for the effect of frothers on the degree of entrainment in laboratory batch flotation. Minerals Engineering, 2017, 100, 124-131.	1.8	16
68	Selective Separation of Fluorite, Barite and Calcite with Valonea Extract and Sodium Fluosilicate as Depressants. Minerals (Basel, Switzerland), 2017, 7, 24.	0.8	44
69	The Influence of Ca2+ and pH on the Interaction between PAHs and Molybdenite Edges. Minerals (Basel,) Tj ETQ	1 0.78 م1 1 p	4314 rgBT /0 14
70	The Interaction between Ca2+ and Molybdenite Edges and Its Effect on Molybdenum Flotation. Minerals (Basel, Switzerland), 2017, 7, 141.	0.8	15
71	The effect of biopolymer dispersants on copper flotation in the presence of kaolinite. Minerals Engineering, 2016, 96-97, 123-129.	1.8	18
72	Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation. Minerals Engineering, 2016, 92, 78-85.	1.8	33

#	Article	IF	CITATIONS
73	The separation of kyanite from quartz by flotation at acidic pH. Minerals Engineering, 2016, 92, 221-228.	1.8	25
74	An empirical model for the degree of entrainment in froth flotation based on particle size and density. Minerals Engineering, 2016, 98, 187-193.	1.8	30
75	The flotation of aluminosilicate polymorphic minerals with anionic and cationic collectors. Minerals Engineering, 2016, 99, 123-132.	1.8	31
76	Rheology measurements for flotation slurries with high clay contents – A critical review. Minerals Engineering, 2016, 98, 137-150.	1.8	46
77	The depression of copper-activated pyrite in flotation by biopolymers with different compositions. Minerals Engineering, 2016, 96-97, 113-122.	1.8	32
78	The depression of pyrite in selective flotation by different reagent systems – A Literature review. Minerals Engineering, 2016, 96-97, 143-156.	1.8	165
79	The observed effect of flotation operating conditions and particle properties on water recovery at laboratory scale. Minerals Engineering, 2016, 94, 83-93.	1.8	10
80	The role of cations in copper flotation in the presence of bentonite. Minerals Engineering, 2016, 96-97, 108-112.	1.8	19
81	The joint action of saline water and flotation reagents in stabilizing froth in coal flotation. International Journal of Mineral Processing, 2016, 148, 15-22.	2.6	15
82	The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions. Minerals Engineering, 2016, 92, 37-46.	1.8	38
83	The effect of zinc cyanide on the flotation of gold from pyritic ore. Minerals Engineering, 2016, 85, 106-111.	1.8	8
84	Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 2016, 288, 202-211.	2.1	52
85	Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant. Electrochimica Acta, 2015, 174, 133-142.	2.6	52
86	The different effects of bentonite and kaolin on copper flotation. Applied Clay Science, 2015, 114, 48-52.	2.6	45
87	Effect of froth stability on dewatering of coal flotation concentrates. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2015, 124, 167-174.	0.6	9
88	Understanding different roles of lignosulfonate in dispersing clay minerals in coal flotation using deionised water and saline water. Fuel, 2015, 142, 235-242.	3.4	45
89	Interactions of clay minerals in copper–gold flotation: Part 2 — Influence of some calcium bearing gangue minerals on the rheological behaviour. International Journal of Mineral Processing, 2015, 141, 51-60.	2.6	14
90	The interaction of clay minerals with gypsum and its effects on copper–gold flotation. Minerals Engineering, 2015, 77, 121-130.	1.8	40

#	Article	IF	CITATIONS
91	The effect of sea water on copper and gold flotation in the presence of bentonite. Minerals Engineering, 2015, 77, 93-98.	1.8	31
92	The interaction of pH modifiers with kaolinite in copper–gold flotation. Minerals Engineering, 2015, 84, 27-33.	1.8	15
93	The effect of regrind mills on the separation of chalcopyrite from pyrite in cleaner flotation. Minerals Engineering, 2015, 83, 33-43.	1.8	7
94	The entrainment of kaolinite particles in copper and gold flotation using fresh water and sea water. Powder Technology, 2015, 286, 431-437.	2.1	31
95	Effects of free cyanide and cuprous cyanide on the flotation of gold and silver bearing pyrite. Minerals Engineering, 2015, 71, 194-204.	1.8	40
96	A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 2015, 70, 77-91.	1.8	190
97	Effect of clay minerals on pulp rheology and the flotation of copper and gold minerals. Minerals Engineering, 2015, 70, 8-13.	1.8	71
98	Froth stability of coal flotation in saline water. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2014, 123, 234-240.	0.6	19
99	The effect of saline water on mineral flotation – A critical review. Minerals Engineering, 2014, 66-68, 13-24.	1.8	153
100	The development of regrind–flotation pre-treatment of the CIL feed in copper–gold plants. Powder Technology, 2014, 258, 60-65.	2.1	4
101	The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Minerals Engineering, 2014, 58, 64-72.	1.8	76
102	Flotation separation of copper sulphides from arsenic minerals at Rosebery copper concentrator. Minerals Engineering, 2014, 66-68, 207-214.	1.8	37
103	Importance of oxidation during regrinding of rougher flotation concentrates with a high content of sulfides. Minerals Engineering, 2014, 66-68, 165-172.	1.8	22
104	Limits of the CIL circuit in copper–gold plants. Minerals Engineering, 2014, 55, 132-137.	1.8	3
105	Cyanide chemistry and its effect on mineral flotation. Minerals Engineering, 2014, 66-68, 25-32.	1.8	60
106	The interaction of clay minerals and saline water in coarse coal flotation. Fuel, 2014, 134, 326-332.	3.4	46
107	Reducing the entrainment of clay minerals in flotation using tap and saline water. Powder Technology, 2014, 253, 216-222.	2.1	90
108	Effect of saline water on the flotation of fine and coarse coal particles in the presence of clay minerals. Minerals Engineering, 2014, 66-68, 145-151.	1.8	34

#	Article	IF	CITATIONS
109	The effect of particle breakage mechanisms during regrinding on the subsequent cleaner flotation. Minerals Engineering, 2014, 66-68, 157-164.	1.8	12
110	Implementation of regrind–flotation pre-treatment of the CIL feed in a copper–gold plant. Minerals Engineering, 2014, 66-68, 215-220.	1.8	3
111	Effect of electrolytes on the flotation of copper minerals in the presence of clay minerals. Minerals Engineering, 2014, 66-68, 152-156.	1.8	10
112	The interaction of lignosulfonate dispersants and grinding media in copper–gold flotation from a high clay ore. Minerals Engineering, 2013, 50-51, 93-98.	1.8	28
113	Eucalyptus oils as green collectors in gold flotation. Minerals Engineering, 2013, 42, 62-67.	1.8	14
114	Interactions of clay minerals in copper–gold flotation: Part 1 – Rheological properties of clay mineral suspensions in the presence of flotation reagents. Minerals Engineering, 2013, 50-51, 30-37.	1.8	60
115	The behaviour of mineral matter in fine coal flotation using saline water. Fuel, 2013, 109, 309-315.	3.4	108
116	Diagnosis of the Surface Chemistry Effects on Fine Coal Flotation Using Saline Water. Energy & Fuels, 2013, 27, 4869-4874.	2.5	104
117	Effect of regrinding conditions on pyrite flotation in the presence of copper ions. International Journal of Mineral Processing, 2013, 125, 129-136.	2.6	47
118	The oxidation of copper sulfide minerals during grinding and their interactions with clay particles. Powder Technology, 2012, 230, 112-117.	2.1	40
119	A review of copper–arsenic mineral removal from copper concentrates. Minerals Engineering, 2012, 36-38, 179-186.	1.8	81
120	Mechanisms for the improved flotation of ultrafine pentlandite and its separation from lizardite in saline water. Minerals Engineering, 2012, 36-38, 284-290.	1.8	37
121	The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding. International Journal of Mineral Processing, 2012, 102-103, 141-149.	2.6	57
122	Pentlandite oxidation in the flotation of a complex nickel ore in saline water. Minerals Engineering, 2011, 24, 85-87.	1.8	11
123	The flotation of slime–fine fractions of Mt. Keith pentlandite ore in de-ionised and saline water. Minerals Engineering, 2011, 24, 479-481.	1.8	44
124	The effect of surface oxidation of copper sulfide minerals on clay slime coating in flotation. Minerals Engineering, 2011, 24, 1687-1693.	1.8	65
125	Reducing quartz gangue entrainment in sulphide ore flotation by high molecular weight polyethylene oxide. International Journal of Mineral Processing, 2010, 97, 44-51.	2.6	54
126	Effect of grinding media on the activation of pyrite flotation. Minerals Engineering, 2010, 23, 600-605.	1.8	51

#	Article	IF	CITATIONS
127	Dissolution of fine and intermediate sized galena particles and their interactions with iron hydroxide colloids. Journal of Colloid and Interface Science, 2010, 347, 127-131.	5.0	18
128	Effect of iron contamination from grinding media on the flotation of sulphide minerals of different particle size. International Journal of Mineral Processing, 2010, 97, 1-6.	2.6	49
129	Inferring the distribution of iron oxidation species on mineral surfaces during grinding of base metal sulphides. Electrochimica Acta, 2010, 55, 5470-5477.	2.6	25
130	Exploiting the dual functions of polymer depressants in fine particle flotation. International Journal of Mineral Processing, 2006, 80, 244-254.	2.6	59
131	Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. International Journal of Mineral Processing, 2003, 69, 87-100.	2.6	123
132	Control of grinding conditions in the flotation of galena and its separation from pyrite. International Journal of Mineral Processing, 2003, 70, 67-82.	2.6	89
133	Towards prediction of oxidation during grinding I. Galena flotation. Minerals Engineering, 2002, 15, 493-498.	1.8	30