Pierre R Fobert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106470/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High density genetic mapping of stripe rust resistance in a â€~Strongfield' / â€~Blackbird' durum wheat population. Canadian Journal of Plant Pathology, 2021, 43, S242-S255.	1.4	5
2	Genetic Characterization of Multiple Components Contributing to Fusarium Head Blight Resistance of FL62R1, a Canadian Bread Wheat Developed Using Systemic Breeding. Frontiers in Plant Science, 2020, 11, 580833.	3.6	8
3	Weighted gene co-expression network analysis unveils gene networks associated with the Fusarium head blight resistance in tetraploid wheat. BMC Genomics, 2019, 20, 925.	2.8	20
4	Genetic characterization of type II Fusarium head blight resistance derived from transgressive segregation in a cross between Eastern and Western Canadian spring wheat. Molecular Breeding, 2018, 38, 1.	2.1	19
5	Integrated transcriptome and hormone profiling highlight the role of multiple phytohormone pathways in wheat resistance against fusarium head blight. PLoS ONE, 2018, 13, e0207036.	2.5	63
6	High density genetic mapping of Fusarium head blight resistance QTL in tetraploid wheat. PLoS ONE, 2018, 13, e0204362.	2.5	43
7	Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum). PLoS ONE, 2018, 13, e0203283.	2.5	17
8	Cell Wall Biomolecular Composition Plays a Potential Role in the Host Type II Resistance to Fusarium Head Blight in Wheat. Frontiers in Microbiology, 2016, 7, 910.	3.5	33
9	Multi-trait and multi-environment QTL analysis reveals the impact of seed colour on seed composition traits in Brassica napus. Molecular Breeding, 2016, 36, 1.	2.1	11
10	Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties. PLoS ONE, 2016, 11, e0153642.	2.5	33
11	Synchrotron based phase contrast X-ray imaging combined with FTIR spectroscopy reveals structural and biomolecular differences in spikelets play a significant role in resistance to Fusarium in wheat. BMC Plant Biology, 2015, 15, 24.	3.6	30
12	High-level expression of sugar inducible gene2 (HSI2) is a negative regulator of drought stress tolerance in Arabidopsis. BMC Plant Biology, 2013, 13, 170.	3.6	11
13	Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes. PLoS ONE, 2013, 8, e77378.	2.5	29
14	<i>Arabidopsis</i> Clade I TGA Transcription Factors Regulate Plant Defenses in an NPR1-Independent Fashion. Molecular Plant-Microbe Interactions, 2012, 25, 1459-1468.	2.6	85
15	NPR1 enhances the DNA binding activity of the <i>Arabidopsis</i> bZIP transcription factor TGA7This paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute Botany, 2009, 87, 561-570.	1.0	20
16	Developing Canadian seed oils as industrial feedstocks. Biofuels, Bioproducts and Biorefining, 2008, 2, 206-214.	3.7	7
17	Transgenic increases in seed oil content are associated with the differential expression of novel Brassica-specific transcripts. BMC Genomics, 2008, 9, 619.	2.8	45
18	Development of a <i>Brassica</i> seed cDNA microarray. Genome, 2008, 51, 236-242.	2.0	25

PIERRE R FOBERT

#	Article	IF	CITATIONS
19	The Coactivator Function of Arabidopsis NPR1 Requires the Core of Its BTB/POZ Domain and the Oxidation of C-Terminal Cysteines. Plant Cell, 2007, 18, 3670-3685.	6.6	234
20	Systemic Acquired Resistance in Canola Is Linked with Pathogenesis-Related Gene Expression and Requires Salicylic Acid. Phytopathology, 2007, 97, 794-802.	2.2	38
21	Conservation of NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 function between Arabidopsis thaliana and Brassica napus. Physiological and Molecular Plant Pathology, 2007, 71, 174-183.	2.5	33
22	In vivo biochemical characterization of transcription factors regulating plant defense response to disease. Canadian Journal of Plant Pathology, 2006, 28, 3-15.	1.4	1
23	Transcription Factors Regulating Plant Defense Responses. , 2006, , 159-205.		0
24	Redox control of systemic acquired resistance. Current Opinion in Plant Biology, 2005, 8, 378-382.	7.1	141
25	Comparison of Transcript Profiling on Arabidopsis Microarray Platform Technologies. Plant Molecular Biology, 2005, 58, 609-624.	3.9	20
26	DISCOVERY OF FUNCTIONAL GENES FOR SYSTEMIC ACQUIRED RESISTANCE IN ARABIDOPSIS THALIANA THROUGH INTEGRATED DATA MINING. Journal of Bioinformatics and Computational Biology, 2004, 02, 639-655.	0.8	24
27	An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant Journal, 2004, 41, 304-318.	5.7	148
28	Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein. Plant Journal, 2003, 33, 607-619.	5.7	43
29	The Arabidopsis NPR1 Disease Resistance Protein Is a Novel Cofactor That Confers Redox Regulation of DNA Binding Activity to the Basic Domain/Leucine Zipper Transcription Factor TGA1. Plant Cell, 2003, 15, 2181-2191.	6.6	518
30	The Arabidopsis NPR1/NIM1 Protein Enhances the DNA Binding Activity of a Subgroup of the TGA Family of bZIP Transcription Factors. Plant Cell, 2000, 12, 279-290.	6.6	516
31	A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Molecular Biology, 1999, 41, 45-55.	3.9	68
32	Characterization of anAGAMOUShomologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed inArabidopsis. Plant Journal, 1998, 15, 625-634.	5.7	168
33	Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Molecular Biology, 1991, 17, 837-851.	3.9	45