Lourdes Marcano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106403/publications.pdf

Version: 2024-02-01

21 315 11 17 papers citations h-index g-index

22 22 374
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Extremely long-range, high-temperature Josephson coupling across a half-metallic ferromagnet. Nature Materials, 2022, 21, 188-194.	27. 5	20
2	Towards the design of contrast-enhanced agents: systematic Ga ³⁺ doping on magnetite nanoparticles. Dalton Transactions, 2022, 51, 2517-2530.	3.3	4
3	Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure. Nanoscale Advances, 2022, 4, 2649-2659.	4.6	3
4	Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-asymmetric X-ray Transmission Microscopy. ACS Nano, 2022, 16, 7398-7408.	14.6	4
5	Nature Driven Magnetic Nanoarchitectures. Springer Series in Materials Science, 2021, , 159-179.	0.6	3
6	Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy. IEEE Access, 2021, 9, 99552-99561.	4.2	9
7	Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance. Chemistry of Materials, 2021, 33, 3139-3154.	6.7	19
8	Nonreciprocal Transport in a Rashba Ferromagnet, Delafossite PdCoO ₂ . Nano Letters, 2021, 21, 8687-8692.	9.1	9
9	A Milestone in the Chemical Synthesis of Fe ₃ O ₄ Nanoparticles: Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia. Chemistry of Materials, 2021, 33, 8693-8704.	6.7	31
10	Controlled Magnetic Anisotropy in Single Domain Mn-doped Biosynthesized Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 22827-22838.	3.1	9
11	Magnetosomes could be protective shields against metal stress in magnetotactic bacteria. Scientific Reports, 2020, 10, 11430.	3.3	18
12	Probing the stability and magnetic properties of magnetosome chains in freeze-dried magnetotactic bacteria. Nanoscale Advances, 2020, 2, 1115-1121.	4.6	11
13	Elucidating the role of shape anisotropy in faceted magnetic nanoparticles using biogenic magnetosomes as a model. Nanoscale, 2020, 12, 16081-16090.	5. 6	15
14	Mn-Doping level dependence on the magnetic response of MnxFe3â^'xO4 ferrite nanoparticles. Dalton Transactions, 2019, 48, 11480-11491.	3.3	26
15	Using the singular value decomposition to extract 2D correlation functions from scattering patterns. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 766-771.	0.1	7
16	Configuration of the magnetosome chain: a natural magnetic nanoarchitecture. Nanoscale, 2018, 10, 7407-7419.	5.6	47
17	Magnetic Study of Co-Doped Magnetosome Chains. Journal of Physical Chemistry C, 2018, 122, 7541-7550.	3.1	24
18	Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1507-1514.	2.4	23

#	Article	IF	CITATIONS
19	Studying nanoparticles' 3D shape by aspect maps: Determination of the morphology of bacterial magnetic nanoparticles. Faraday Discussions, 2016, 191, 177-188.	3.2	7
20	On the mineral core of ferritin-like proteins: structural and magnetic characterization. Nanoscale, 2016, 8, 1088-1099.	5.6	25
21	Correction to "Magnetic Study of Co-Doped Magnetosome Chains― Journal of Physical Chemistry C, 0,	3.1	0