Satoshi Hashigami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2106129/publications.pdf

Version: 2024-02-01

1478505 1372567 11 149 10 6 citations h-index g-index papers 11 11 11 234 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Improvement of Cycleability and Rateâ€Capability of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Materials Coated with Lithium Boron Oxide by an Antisolvent Precipitation Method. ChemistrySelect, 2019, 4, 8676-8681.	1.5	14
2	Hard X-ray Photoelectron Spectroscopy Analysis of Surface Chemistry of Spray Pyrolyzed LiNi _{0.5} Co _{0.2} Mn _{0.3} C ₂ Positive Electrode Coated with Lithium Boron Oxide. Electrochemistry, 2019, 87, 357-364.	1.4	4
3	Effect of Lithium Silicate Addition on the Microstructure and Crack Formation of LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Cathode Particles. ACS Applied Materials & Diterfaces, 2019, 11, 39910-39920.	8.0	23
4	Communicationâ€"Enhancement of Structural Stability of LiNi0.5Co0.2Mn0.3O2 Cathode Particles against High-Voltage Cycling by Lithium Silicate Addition. Journal of the Electrochemical Society, 2019, 166, A941-A943.	2.9	5
5	Influence of lithium silicate coating on retarding crack formation in LiNi0.5Co0.2Mn0.3O2 cathode particles. Electrochimica Acta, 2018, 291, 304-310.	5.2	23
6	Gas Composition Analysis Using Yttria-stabilized Zirconia Oxygen Sensor during Dry Reforming and Partial Oxidation of Methane. Journal of the Japan Petroleum Institute, 2018, 61, 72-79.	0.6	1
7	Influence of Fabrication Routes on Microstructure and Electrochemical Performance of Ni–GDC Cathode for High Temperature CO ₂ Reduction in Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2016, 163, F3084-F3090.	2.9	7
8	Suppression of Manganese-ion Dissolution by SiO ₂ Aerosol Addition from Spray Pyrolyzed Li ₂ MnO ₃ -LiMn _{1/3} Ni _{1/3} Co _{1/3} O ₂ . Electrochemistry, 2016, 84, 842-847.	1.4	3
9	Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. Journal of Power Sources, 2015, 293, 642-648.	7.8	61
10	Improvement of the redox durability of Ni-gadolinia doped ceria anodes due to the use of the composite particles prepared by spray pyrolysis method. Journal of Power Sources, 2014, 248, 190-195.	7.8	8
11	Carbon Dioxide Reforming of Methane on Ni-ceria-based Oxide Cermet Anode for Solid Oxide Fuel Cells. ECS Transactions, 2012, 42, 305-311.	0.5	0