Clara G De Los Reyes GavilÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2105943/publications.pdf

Version: 2024-02-01

168 papers 11,920 citations

20817 60 h-index 30087 103 g-index

169 all docs

169 docs citations 169 times ranked 12756 citing authors

#	Article	IF	CITATIONS
1	In Vitro Probiotic Modulation of the Intestinal Microbiota and $2\hat{a}\in^2$ Fucosyllactose Consumption in Fecal Cultures from Infants at Two Months of Age. Microorganisms, 2022, 10, 318.	3.6	7
2	Pilot Study for the Dietary Assessment of Xenobiotics Derived from Food Processing in an Adult Spanish Sample. Foods, 2022, 11 , 470.	4.3	6
3	A body weight loss- and health-promoting gut microbiota is established after bariatric surgery in individuals with severe obesity. Journal of Pharmaceutical and Biomedical Analysis, 2021, 193, 113747.	2.8	14
4	New players in the relationship between diet and microbiota: the role of macromolecular antioxidant polyphenols. European Journal of Nutrition, 2021, 60, 1403-1413.	3.9	10
5	Effect of inulin-type fructans and galactooligosaccharides on cultures of <i>Lactobacillus</i> strains isolated in Algeria from camel's milk and human colostrum. Food Science and Technology International, 2021, 27, 223-233.	2.2	4
6	Impact of Extreme Obesity and Dietâ€Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Molecular Nutrition and Food Research, 2021, 65, e2000030.	3.3	19
7	Intestinal microbiota alterations by dietary exposure to chemicals from food cooking and processing. Application of data science for risk prediction. Computational and Structural Biotechnology Journal, 2021, 19, 1081-1091.	4.1	4
8	Diet and Microbiota in the Elderly. , 2021, , 55-55.		0
9	In vitro Selection of Probiotics for Microbiota Modulation in Normal-Weight and Severely Obese Individuals: Focus on Gas Production and Interaction With Intestinal Epithelial Cells. Frontiers in Microbiology, 2021, 12, 630572.	3.5	8
10	Early-Life Development of the Bifidobacterial Community in the Infant Gut. International Journal of Molecular Sciences, 2021, 22, 3382.	4.1	28
11	Influence of 2′-Fucosyllactose on the Microbiota Composition and Metabolic Activity of Fecal Cultures from Breastfed and Formula-Fed Infants at Two Months of Age. Microorganisms, 2021, 9, 1478.	3.6	15
12	Levels of Predominant Intestinal Microorganisms in 1 Month-Old Full-Term Babies and Weight Gain during the First Year of Life. Nutrients, 2021, 13, 2412.	4.1	10
13	Effect of Intrapartum Antibiotics Prophylaxis on the Bifidobacterial Establishment within the Neonatal Gut. Microorganisms, 2021, 9, 1867.	3.6	8
14	Role of Bifidobacteria on Infant Health. Microorganisms, 2021, 9, 2415.	3.6	40
15	Use of Fecal Slurry Cultures to Study In Vitro Effects of Bacteriocins on the Gut Bacterial Populations of Infants. Probiotics and Antimicrobial Proteins, 2020, 12, 1218-1225.	3.9	4
16	Comparison of Different Dietary Indices as Predictors of Inflammation, Oxidative Stress and Intestinal Microbiota in Middle-Aged and Elderly Subjects. Nutrients, 2020, 12, 3828.	4.1	24
17	Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM-1®) Displays In Vitro Activity against Some Intestinal Pathogens. Nutrients, 2020, 12, 3259.	4.1	13
18	Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients, 2020, 12, 1287.	4.1	53

#	Article	IF	CITATIONS
19	An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Frontiers in Microbiology, 2020, 11, 973.	3.5	126
20	In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. International Journal of Molecular Sciences, 2020, 21, 906.	4.1	29
21	Microbiome: Effects of Ageing and Diet. Current Issues in Molecular Biology, 2020, 36, 33-62.	2.4	42
22	Donated Human Milk as a Determinant Factor for the Gut Bifidobacterial Ecology in Premature Babies. Microorganisms, 2020, 8, 760.	3.6	13
23	Age-Associated Changes in Gut Microbiota and Dietary Components Related with the Immune System in Adulthood and Old Age: A Cross-Sectional Study. Nutrients, 2019, 11, 1765.	4.1	113
24	Functional Effects of EPS-Producing Bifidobacterium Administration on Energy Metabolic Alterations of Diet-Induced Obese Mice. Frontiers in Microbiology, 2019, 10, 1809.	3.5	35
25	Intestinal Immunomodulation and Shifts on the Gut Microbiota of BALB/c Mice Promoted by Two <i>Bifidobacterium</i> and <i>Lactobacillus</i> Strains Isolated from Human Samples. BioMed Research International, 2019, 2019, 1-8.	1.9	3
26	Fermented Dairy Foods: Impact on Intestinal Microbiota and Health-Linked Biomarkers. Frontiers in Microbiology, 2019, 10, 1046.	3.5	79
27	Xenobiotics Formed during Food Processing: Their Relation with the Intestinal Microbiota and Colorectal Cancer. International Journal of Molecular Sciences, 2019, 20, 2051.	4.1	53
28	Impact of probiotics on development and behaviour in Drosophila melanogaster – a potential in vivo model to assess probiotics. Beneficial Microbes, 2019, 10, 179-188.	2.4	5
29	Exploring the interactions between serum free fatty acids and fecal microbiota in obesity through a machine learning algorithm. Food Research International, 2019, 121, 533-541.	6.2	25
30	Microbiome: Effects of Ageing and Diet. , 2019, , .		0
31	Stability of Lactic Acid Bacteria and Bifidobacteria in Foods and Supplements. , 2019, , 337-353.		0
32	Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods, 2018, 45, 34-46.	3.4	29
33	<i>Bifidobacterium breve</i> IPLA20005 affects in vitro the expression of <i>hly</i> and <i>luxS</i> genes, related to the virulence of <i>Listeria monocytogenes</i> Lm23. Canadian Journal of Microbiology, 2018, 64, 215-221.	1.7	12
34	Bioactive compounds from regular diet and faecal microbial metabolites. European Journal of Nutrition, 2018, 57, 487-497.	3.9	18
35	Early microbiota, antibiotics and health. Cellular and Molecular Life Sciences, 2018, 75, 83-91.	5.4	76
36	Fecal microbiota profile in a group of myasthenia gravis patients. Scientific Reports, 2018, 8, 14384.	3.3	45

#	Article	IF	Citations
37	Could Fecal Phenylacetic and Phenylpropionic Acids Be Used as Indicators of Health Status?. Journal of Agricultural and Food Chemistry, 2018, 66, 10438-10446.	5.2	25
38	C-section and the Neonatal Gut Microbiome Acquisition: Consequences for Future Health. Annals of Nutrition and Metabolism, 2018, 73, 17-23.	1.9	37
39	Real-time monitoring of HT29 epithelial cells as an in vitro model for assessing functional differences among intestinal microbiotas from different human population groups. Journal of Microbiological Methods, 2018, 152, 210-216.	1.6	6
40	Selection of potential probiotic bifidobacteria and prebiotics for elderly by using in vitro faecal batch cultures. European Food Research and Technology, 2017, 243, 157-165.	3.3	17
41	Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome, 2017, 5, 12.	11.1	113
42	Adherence to a Mediterranean Diet Influences the Fecal Metabolic Profile of Microbial-Derived Phenolics in a Spanish Cohort of Middle-Age and Older People. Journal of Agricultural and Food Chemistry, 2017, 65, 586-595.	5.2	63
43	Nutrition and the gut microbiome in the elderly. Gut Microbes, 2017, 8, 82-97.	9.8	191
44	Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythematosus. Frontiers in Immunology, 2017, 8, 23.	4.8	95
45	Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids. Frontiers in Immunology, 2017, 8, 823.	4.8	7 5
46	Intestinal Microbiota and Weight-Gain in Preterm Neonates. Frontiers in Microbiology, 2017, 8, 183.	3.5	35
47	Shaping the Metabolism of Intestinal Bacteroides Population through Diet to Improve Human Health. Frontiers in Microbiology, 2017, 8, 376.	3.5	140
48	Different Intestinal Microbial Profile in Over-Weight and Obese Subjects Consuming a Diet with Low Content of Fiber and Antioxidants. Nutrients, 2017, 9, 551.	4.1	36
49	Impact of intrapartum antimicrobial prophylaxis upon the intestinal microbiota and the prevalence of antibiotic resistance genes in vaginally delivered full-term neonates. Microbiome, 2017, 5, 93.	11.1	165
50	Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 2016, 7, 185.	3.5	1,443
51	Editorial: Insights into Microbe–Microbe Interactions in Human Microbial Ecosystems: Strategies to Be Competitive. Frontiers in Microbiology, 2016, 7, 1508.	3.5	9
52	Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study. International Journal of Molecular Sciences, 2016, 17, 649.	4.1	109
53	Bacteroides fragilis metabolises exopolysaccharides produced by bifidobacteria. BMC Microbiology, 2016, 16, 150.	3.3	48
54	Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study. Beneficial Microbes, 2016, 7, 265-273.	2.4	10

#	Article	IF	CITATIONS
55	Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Critical Reviews in Food Science and Nutrition, 2016, 56, 1440-1453.	10.3	139
56	A proteomic approach towards understanding the cross talk between <i>Bacteroides fragilis</i> and <i>Bifidobacterium longum</i> in coculture. Canadian Journal of Microbiology, 2016, 62, 623-628.	1.7	8
57	Production of immune response mediators by HT-29 intestinal cell-lines in the presence of Bifidobacterium-treated infant microbiota. Beneficial Microbes, 2015, 6, 543-552.	2.4	14
58	Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria. Frontiers in Microbiology, 2015, 6, 825.	3.5	44
59	Role of Microorganisms Present in Dairy Fermented Products in Health and Disease. BioMed Research International, 2015, 2015, 1-2.	1.9	11
60	Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview. BioMed Research International, 2015, 2015, 1-13.	1.9	107
61	Intestinal Microbiota Development in Preterm Neonates and EffectÂofÂPerinatal Antibiotics. Journal of Pediatrics, 2015, 166, 538-544.	1.8	329
62	The establishment of the infant intestinal microbiome is not affected by rotavirus vaccination. Scientific Reports, 2015, 4, 7417.	3.3	15
63	Red Wine Consumption Is Associated with Fecal Microbiota and Malondialdehyde in a Human Population. Journal of the American College of Nutrition, 2015, 34, 135-141.	1.8	26
64	Enhanced butyrate formation by cross-feeding between <i>Faecalibacterium prausnitzii</i> and <i>Bifidobacterium adolescentis</i> FEMS Microbiology Letters, 2015, 362, fnv176.	1.8	250
65	Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clinical Nutrition, 2015, 34, 501-507.	5.0	220
66	Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice. PLoS ONE, 2015, 10, e0131009.	2.5	109
67	Effect of an α-Tocopherol-Containing Antioxidant Parenteral Emulsion upon Gut Microbiota in Preterm Infants. International Journal of Child Health and Nutrition, 2015, 4, 90-93.	0.1	1
68	Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 2014, 20, 15163.	3.3	390
69	Immune Modulating Capability of Two Exopolysaccharide-Producing <i>Bifidobacterium</i> Strains in a Wistar Rat Model. BioMed Research International, 2014, 2014, 1-9.	1.9	32
70	The human intestinal microbiome at extreme ages of life. Dietary intervention as a way to counteract alterations. Frontiers in Genetics, 2014, 5, 406.	2.3	124
71	Pilot Study of Diet and Microbiota: Interactive Associations of Fibers and Polyphenols with Human Intestinal Bacteria. Journal of Agricultural and Food Chemistry, 2014, 62, 5330-5336.	5. 2	75
72	Effect of bacteria used in food industry on the proliferation and cytokine production of epithelial intestinal cellular lines. Journal of Functional Foods, 2014, 6, 348-355.	3 . 4	11

#	Article	IF	CITATIONS
73	<i>In vitro</i> evaluation of the impact of human background microbiota on the response to <i>Bifidobacterium</i> strains and fructo-oligosaccharides. British Journal of Nutrition, 2013, 110, 2030-2036.	2.3	25
74	Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria. Applied and Environmental Microbiology, 2013, 79, 7518-7524.	3.1	82
75	Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in inÂvitro fecal batch cultures from preterm neonates. Anaerobe, 2013, 19, 9-16.	2.1	45
76	Co-culture affects protein profile and heat tolerance of Lactobacillus delbrueckii subsp. lactis and Bifidobacterium longum. Food Research International, 2013, 54, 1080-1083.	6.2	5
77	Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology, 2013, 4, 202.	3.5	417
78	Microbial Targets for the Development of Functional Foods Accordingly with Nutritional and Immune Parameters Altered in the Elderly. Journal of the American College of Nutrition, 2013, 32, 399-406.	1.8	65
79	Insights into the Ropy Phenotype of the Exopolysaccharide-Producing Strain Bifidobacterium animalis subsp. <i>lactis</i> AldOxR. Applied and Environmental Microbiology, 2013, 79, 3870-3874.	3.1	19
80	Population Dynamics of Some Relevant Intestinal Microbial Groups in Human Fecal Batch Cultures with Added Fermentable Xylooligosaccharides Obtained from Rice Husks. BioResources, $2013, 8, \ldots$	1.0	5
81	Fatty acids intake and immune parameters in the elderly. Nutricion Hospitalaria, 2013, 28, 474-8.	0.3	8
82	Controlled Gene Expression in Bifidobacteria by Use of a Bile-Responsive Element. Applied and Environmental Microbiology, 2012, 78, 581-585.	3.1	17
83	Molecular Clues To Understand the Aerotolerance Phenotype of Bifidobacterium animalis subsp. lactis. Applied and Environmental Microbiology, 2012, 78, 644-650.	3.1	39
84	Facultative to strict anaerobes ratio in the preterm infant microbiota. Gut Microbes, 2012, 3, 583-588.	9.8	73
85	Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics and Antimicrobial Proteins, 2012, 4, 227-237.	3.9	156
86	Exopolysaccharide-producing Bifidobacterium strains elicit different in vitro responses upon interaction with human cells. Food Research International, 2012, 46, 99-107.	6.2	102
87	Characterization of Exopolysaccharides Produced by <i>Bifidobacterium longum</i> NB667 and Its Cholate-Resistant Derivative Strain IPLA B667dCo. Journal of Agricultural and Food Chemistry, 2012, 60, 1028-1035.	5.2	26
88	Development of probiotic products for nutritional requirements of specific human populations. Engineering in Life Sciences, 2012, 12, 368-376.	3.6	16
89	Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiology Ecology, 2012, 79, 763-772.	2.7	365
90	Deep 16S rRNA metagenomics and quantitative PCR analyses of the premature infant fecal microbiota. Anaerobe, 2012, 18, 378-380.	2.1	60

#	Article	IF	CITATIONS
91	A bileâ€inducible membrane protein mediates bifidobacterial bile resistance. Microbial Biotechnology, 2012, 5, 523-535.	4.2	28
92	Technological characterization and survival of the exopolysaccharide-producing strain <i>Lactobacillus delbrueckii</i> subsp. <i>lactis</i> 193 and its bile-resistant derivative 193+ in simulated gastric and intestinal juices. Journal of Dairy Research, 2011, 78, 357-364.	1.4	18
93	Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Research in Microbiology, 2011, 162, 514-519.	2.1	40
94	Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiology Letters, 2011, 314, 125-130.	1.8	24
95	Human cecum content modulates production of extracellular proteins by food and probiotic bacteria. FEMS Microbiology Letters, 2011, 324, 189-194.	1.8	10
96	Assessment of intestinal microbiota of full-term breast-fed infants from two different geographical locations. Early Human Development, 2011, 87, 511-513.	1.8	47
97	Safety and intestinal microbiota modulation by the exopolysaccharide-producing strains Bifidobacterium animalis IPLA R1 and Bifidobacterium longum IPLA E44 orally administered to Wistar rats. International Journal of Food Microbiology, 2011, 144, 342-351.	4.7	66
98	Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. International Journal of Food Microbiology, 2011, 149, 28-36.	4.7	109
99	Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. International Journal of Food Microbiology, 2011 , 147 , $97-104$.	4.7	108
100	Scientific summary of the 3rd International Symposium on Propionibacteria and Bifidobacteria: Dairy and Probiotic Applications. International Journal of Food Microbiology, 2011, 149, 2-3.	4.7	1
101	How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes and Nutrition, 2011, 6, 307-318.	2.5	94
102	Stress Responses of Bifidobacteria. , 2011, , 323-347.		3
103	Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe, 2010, 16, 307-310.	2.1	271
104	Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile. International Journal of Food Microbiology, 2010, 142, 132-141.	4.7	78
105	Production of human growth hormone by Lactococcus lactis. Journal of Bioscience and Bioengineering, 2010, 109, 322-324.	2.2	4
106	Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells. Journal of Applied Microbiology, 2010, 109, 2079-2086.	3.1	89
107	Genetic Basis of Tetracycline Resistance in <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> . Applied and Environmental Microbiology, 2010, 76, 3364-3369.	3.1	61
108	Mosaic-Like Sequences Containing Transposon, Phage, and Plasmid Elements among <i>Listeria monocytogenes</i> Plasmids. Applied and Environmental Microbiology, 2010, 76, 4851-4857.	3.1	21

#	Article	IF	Citations
109	Exopolysaccharides produced by lactic acid bacteria in food and probiotic applications. , 2010, , 885-902.		13
110	Technological and probiotic selection criteria of a bile-adapted Bifidobacterium animalis subsp. lactis strain. International Dairy Journal, 2010, 20, 800-805.	3.0	52
111	Bacterial and Eukaryotic Phosphoketolases: Phylogeny, Distribution and Evolution. Journal of Molecular Microbiology and Biotechnology, 2010, 18, 37-51.	1.0	31
112	Bile Affects the Synthesis of Exopolysaccharides by <i>Bifidobacterium animalis</i> . Applied and Environmental Microbiology, 2009, 75, 1204-1207.	3.1	100
113	The cell-envelope proteome of Bifidobacterium longum in an in vitro bile environment. Microbiology (United Kingdom), 2009, 155, 957-967.	1.8	82
114	Bile-Inducible Efflux Transporter from <i>Bifidobacterium longum</i> NCC2705, Conferring Bile Resistance. Applied and Environmental Microbiology, 2009, 75, 3153-3160.	3.1	66
115	Coculture of Bifidobacterium longum and Bifidobacterium breve alters their protein expression profiles and enzymatic activities. International Journal of Food Microbiology, 2009, 133, 148-153.	4.7	37
116	Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures. International Journal of Food Microbiology, 2009, 135, 260-267.	4.7	143
117	Probiotic fermented milks: Present and future. International Journal of Dairy Technology, 2009, 62, 472-483.	2.8	57
118	Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. Journal of Dairy Research, 2009, 76, 317-325.	1.4	53
119	Production of exopolysaccharides by Lactobacillus and Bifidobacterium strains of human origin, and metabolic activity of the producing bacteria in milk. Journal of Dairy Science, 2009, 92, 4158-4168.	3.4	113
120	Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 6-15.	1.0	137
121	Bile-resistant derivatives obtained from non-intestinal dairy lactobacilli. International Dairy Journal, 2008, 18, 377-385.	3.0	32
122	A Preliminary Analysis of <i>Bifidobacterium longum</i> Exported Proteins by Two-Dimensional Electrophoresis. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 74-79.	1.0	30
123	Two Different Tetracycline Resistance Mechanisms, Plasmid-Carried <i>tet</i> (L) and Chromosomally Located Transposon-Associated <i>tet</i> (M), Coexist in <i>Lactobacillus sakei</i> Rits 9. Applied and Environmental Microbiology, 2008, 74, 1394-1401.	3.1	75
124	Mucin Degradation by <i>Bifidobacterium</i> Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2008, 74, 1936-1940.	3.1	180
125	Exopolysaccharides Produced by Intestinal <i>Bifidobacterium</i> Substrates for Human Intestinal Bacteria. Applied and Environmental Microbiology, 2008, 74, 4737-4745.	3.1	197
126	Proteomics of stress response in Bifidobacterium. Frontiers in Bioscience - Landmark, 2008, Volume, 6905.	3.0	45

#	Article	IF	CITATIONS
127	Low-pH Adaptation and the Acid Tolerance Response of <i>Bifidobacterium longum</i> Biotype longum. Applied and Environmental Microbiology, 2007, 73, 6450-6459.	3.1	173
128	Adaptation and Response of <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> to Bile: a Proteomic and Physiological Approach. Applied and Environmental Microbiology, 2007, 73, 6757-6767.	3.1	125
129	Screening of Exopolysaccharide-Producing Lactobacillus and Bifidobacterium Strains Isolated from the Human Intestinal Microbiota. Applied and Environmental Microbiology, 2007, 73, 4385-4388.	3.1	75
130	Cell envelope changes in <i>Bifidobacterium animalis </i> ssp. <i>lactis </i> as a response to bile. FEMS Microbiology Letters, 2007, 274, 316-322.	1.8	85
131	Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile $\hat{a}\in$ "A preliminary study. International Journal of Food Microbiology, 2007, 113, 228-232.	4.7	71
132	Spontaneous Lactobacillus delbrueckii phage-resistant mutants with acquired bile tolerance. International Journal of Food Microbiology, 2007, 119, 236-242.	4.7	13
133	Induction of $\hat{l}\pm l$ -arabinofuranosidase activity by monomeric carbohydrates in Bifidobacterium longum and ubiquity of encoding genes. Archives of Microbiology, 2007, 187, 145-153.	2.2	24
134	Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. International Dairy Journal, 2006, 16, 850-855.	3.0	87
135	Exopolysaccharides Produced by Probiotic Strains Modify the Adhesion of Probiotics and Enteropathogens to Human Intestinal Mucus. Journal of Food Protection, 2006, 69, 2011-2015.	1.7	201
136	The F ₁ F ₀ â€ATPase of <i>Bifidobacterium animalis</i> is involved in bile tolerance. Environmental Microbiology, 2006, 8, 1825-1833.	3.8	83
137	Ubiquity and diversity of multidrug resistance genes inLactococcus lactisstrains isolated between 1936 and 1995. FEMS Microbiology Letters, 2006, 263, 21-25.	1.8	14
138	Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology (United Kingdom), 2006, 152, 3497-3505.	1.8	34
139	Ability of Bifidobacterium strains with acquired resistance to bile to adhere to human intestinal mucus. International Journal of Food Microbiology, 2005, 101, 341-346.	4.7	60
140	Acquisition of Bile Salt Resistance Promotes Antibiotic Susceptibility Changes in Bifidobacterium. Journal of Food Protection, 2005, 68, 1916-1919.	1.7	18
141	A Bile Salt-Resistant Derivative of Bifidobacterium animalis Has an Altered Fermentation Pattern When Grown on Glucose and Maltose. Applied and Environmental Microbiology, 2005, 71, 6564-6570.	3.1	65
142	Proteomic Analysis of Global Changes in Protein Expression during Bile Salt Exposure of <i>Bifidobacterium longum</i> NCIMB 8809. Journal of Bacteriology, 2005, 187, 5799-5808.	2.2	182
143	Macrolide Resistance Mediated by a <i>Bifidobacterium breve</i> Membrane Protein. Antimicrobial Agents and Chemotherapy, 2005, 49, 4379-4381.	3.2	20
144	Effect of acquired resistance to bile salts on enzymatic activities involved in the utilisation of carbohydrates by bifidobacteria. An overview. Dairy Science and Technology, 2005, 85, 113-123.	0.9	8

#	Article	IF	CITATIONS
145	Effect of the adaptation to high bile salts concentrations on glycosidic activity, survival at low PH and cross-resistance to bile salts in Bifidobacterium. International Journal of Food Microbiology, 2004, 94, 79-86.	4.7	125
146	Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 2004, 37, 839-850.	6.2	192
147	Acquired resistance to bile increases fructose-6-phosphate phosphoketolase activity in Bifidobacterium. FEMS Microbiology Letters, 2004, 235, 35-41.	1.8	14
148	Inhibition of Bacillus cereus growth in carbonated fermented bifidus milk. Food Microbiology, 2003, 20, 519-526.	4.2	13
149	Characterisation of a Bifidobacterium strain with acquired resistance to cholate—A preliminary study. International Journal of Food Microbiology, 2003, 82, 191-198.	4.7	66
150	Quality of plain yoghurt made from refrigerated and CO2-treated milk. Food Research International, 2003, 36, 43-48.	6.2	32
151	Purification and Functional Characterization of a Novel α- l -Arabinofuranosidase from Bifidobacterium longum B667. Applied and Environmental Microbiology, 2003, 69, 5096-5103.	3.1	99
152	Proteolysis in rennet-coagulated Spanish hard cheeses made from milk preserved by refrigeration and addition of carbon dioxide. Journal of Dairy Research, 2003, 70, 115-122.	1.4	4
153	Evolution of carbohydrate fraction in carbonated fermented milks as affected by \hat{l}^2 -galactosidase activity of starter strains. Journal of Dairy Research, 2002, 69, 125-137.	1.4	10
154	Manufacture of Spanish hard cheeses from CO2-treated milk. Food Research International, 2002, 35, 681-690.	6.2	13
155	Susceptibility of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses to some antibiotics and heavy metal salts. Food Microbiology, 2001, 18, 67-73.	4.2	13
156	Phenotypic characterization of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. Food Microbiology, 2000, 17, 461-467.	4.2	16
157	Characteristics of carbonated fermented milk and survival of probiotic bacteria. International Dairy Journal, 2000, 10, 213-220.	3.0	47
158	Characterization of plasmids from Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. International Journal of Food Microbiology, 1998, 39, 231-236.	4.7	16
159	Polymorphism of Listeria monocytogenes and Listeria innocua strains isolated from short-ripened cheeses. Journal of Applied Microbiology, 1998, 84, 255-262.	3.1	27
160	Afuega'l Pitu Cheese Quality: Carbon Dioxide Addition to Refrigerated Milk in Acid-coagulated Cheesemaking. International Dairy Journal, 1998, 8, 951-958.	3.0	16
161	Influence of Carbon Dioxide Addition to Raw Milk on Microbial Levels and Some Fat-Soluble Vitamin Contents of Raw and Pasteurized Milk. Journal of Agricultural and Food Chemistry, 1998, 46, 1552-1555.	5 . 2	23
162	Behavior of Listeria monocytogenes during the Manufacture, Ripening, and Cold Storage of Afuega'l Pitu Cheese. Journal of Food Protection, 1997, 60, 689-693.	1.7	11

#	Article	IF	CITATIONS
163	Some Chemical and Bacteriological Characteristics of Regional Cheeses from Asturias, Spain. Journal of Food Protection, 1996, 59, 509-515.	1.7	19
164	Preservation of the Microbiological and Biochemical Quality of Raw Milk by Carbon Dioxide Addition: A Pilot-Scale Study. Journal of Food Protection, 1996, 59, 502-508.	1.7	53
165	Isolation and Characterization of Temperate and Virulent Bacteriophages of Lactobacillus plantarum. Journal of Dairy Science, 1995, 78, 741-750.	3.4	28
166	A <i>Lactobacillus helveticus </i> -Specific DNA Probe Detects Restriction Fragment Length Polymorphisms in This Species. Applied and Environmental Microbiology, 1992, 58, 3429-3432.	3.1	163
167	Nutritional regulation of differentiation and synthesis of an exocytoplasmic deoxyriboendonuclease in Streptomyces antibioticus. Microbiology (United Kingdom), 1991, 137, 299-305.	1.8	13
168	Evidence for a Plasmid-Linked Restriction-Modification System in <i>Lactobacillus helveticus</i> Applied and Environmental Microbiology, 1990, 56, 3412-3419.	3.1	35