Renaud Boulanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2105912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of spontaneous fermentation location on the fingerprint of volatile compound precursors of cocoa and the sensory perceptions of the end-chocolate. Journal of Food Science and Technology, 2022, 59, 4466-4478.	2.8	1
2	Multi-block classification of chocolate and cocoa samples into sensory poles. Food Chemistry, 2021, 340, 127904.	8.2	14
3	Development of a model for the alcoholic fermentation of cocoa beans by a Saccharomyces cerevisiae strain. International Journal of Food Microbiology, 2021, 337, 108917.	4.7	15
4	Two Main Biosynthesis Pathways Involved in the Synthesis of the Floral Aroma of the Nacional Cocoa Variety. Frontiers in Plant Science, 2021, 12, 681979.	3.6	10
5	Multiblock Analysis to Relate Polyphenol Targeted Mass Spectrometry and Sensory Properties of Chocolates and Cocoa Beans. Metabolites, 2020, 10, 311.	2.9	6
6	Physical, nutritional, and sensory quality of riceâ€based biscuits fortified with safou (<i>Dacryodes) Tj ETQq0 0 0</i>	rgBT /Ove	rlock 10 Tf 5
7	Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules, 2020, 25, 1809.	3.8	23
8	Transfer kinetics of labeled aroma compounds from liquid media into coffee beans during simulated wet processing conditions. Food Chemistry, 2020, 322, 126779.	8.2	7
9	Quality, typicity and potential valorization of Piper borbonense, a poorly known wild pepper from Reunion Island. Fruits, 2020, 75, 95-103.	0.4	2
10	Effect of aroma potential of Saccharomyces cerevisiae fermentation on the volatile profile of raw cocoa and sensory attributes of chocolate produced thereof. European Food Research and Technology, 2019, 245, 1459-1471.	3.3	33
11	Fast Discrimination of Chocolate Quality Based on Average-Mass-Spectra Fingerprints of Cocoa Polyphenols. Journal of Agricultural and Food Chemistry, 2019, 67, 2723-2731.	5.2	20
12	Impact of turning, pod storage and fermentation time on microbial ecology and volatile composition of cocoa beans. Food Research International, 2019, 119, 477-491.	6.2	56
13	Volatile compounds profiling by using proton transfer reactionâ€time of flightâ€mass spectrometry (PTRâ€ToFâ€MS). The case study of dark chocolates organoleptic differences. Journal of Mass Spectrometry, 2019, 54, 92-119.	1.6	33
14	Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations. Food Research International, 2018, 107, 675-682.	6.2	36
15	Characterization of new flavan-3-ol derivatives in fermented cocoa beans. Food Chemistry, 2018, 259, 207-212.	8.2	18
16	Oxidative status of a yogurt-like fermented maize product containing phytosterols. Journal of Food Science and Technology, 2018, 55, 1859-1869.	2.8	10
17	Impact of fruit texture on the release and perception of aroma compounds during in vivo consumption using fresh and processed mango fruits. Food Chemistry, 2018, 239, 806-815.	8.2	28

18Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper8.22118borbonense. Food Chemistry, 2017, 219, 274-281.8.221

#	Article	IF	CITATIONS
19	Aroma compounds in fresh and dried mango fruit (<i><scp>M</scp>angifera indica </i> <scp>L</scp> .) Tj ETQq1	1 0.78431 2.7	.4 rgBT /Ove 57
	and Technology, 2016, 51, 789-800.		
20	Contribution of predominant yeasts to the occurrence of aroma compounds during cocoa bean fermentation. Food Research International, 2016, 89, 910-917.	6.2	71
21	Biosynthesis of 2-acetyl-1-pyrroline in rice calli cultures: Demonstration of 1-pyrroline as a limiting substrate. Food Chemistry, 2016, 197, 965-971.	8.2	52
22	Impact of fermentation on nitrogenous compounds of cocoa beans (Theobroma cacao L.) from various origins. Food Chemistry, 2016, 192, 958-964.	8.2	31
23	2-Acetyl-1-Pyrroline Synthesis during Rice Plant (Oryza sativa L.) Growth under Controlled Salinity Conditions. , 2014, , 319-323.		0
24	Aromatic composition and potent odorants of the "specialty coffee―brew "Bourbon Pointu― correlated to its three trade classifications. Food Research International, 2014, 61, 264-271.	6.2	47
25	Use of Multi-response Modelling to Investigate Mechanisms of β-Carotene Degradation in Dried Orange-Fleshed Sweet Potato During Storage: from Carotenoids to Aroma Compounds. Food and Bioprocess Technology, 2014, 7, 1656-1669.	4.7	12
26	Near Infra-red Characterization of Changes in Flavan-3-ol Derivatives in Cocoa (<i>Theobroma) Tj ETQq0 0 0 rgBT 2014, 62, 10136-10142.</i>	/Overlock 5.2	10 Tf 50 46 12
27	Near infrared spectroscopy as a new tool to determine cocoa fermentation levels through ammonia nitrogen quantification. Food Chemistry, 2014, 148, 240-245.	8.2	37
28	Postharvest treatments of wild pepper (<i>Piper</i> spp.) in Madagascar. Fruits, 2014, 69, 371-380.	0.4	7
29	The Use of near Infrared Spectroscopy to Determine the Fat, Caffeine, Theobromine and (â^')-Epicatechin Contents in Unfermented and Sun-Dried Beans of Criollo Cocoa. Journal of Near Infrared Spectroscopy, 2012, 20, 307-315.	1.5	40
30	Modeling deep-fat frying for control of acrylamide reaction in plantain. Journal of Food Engineering, 2012, 113, 156-166.	5.2	17
31	Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bear as well as coffee beverage quality. Food Chemistry, 2012, 135, 2575-2583.	8.2	152
32	Effect of Timing and Duration of Salt Treatment during Growth of a Fragrant Rice Variety on Yield and 2-Acetyl-1-pyrroline, Proline, and GABA Levels. Journal of Agricultural and Food Chemistry, 2012, 60, 3824-3830.	5.2	77
33	Characterisation of the volatile profile of coconut water from five varieties using an optimised HSâ€&PMEâ€GC analysis. Journal of the Science of Food and Agriculture, 2012, 92, 2471-2478.	3.5	37
34	Acrylamide kinetic in plantain during heating process: Precursors and effect of water activity. Food Research International, 2011, 44, 1452-1458.	6.2	28
35	Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography–tandem mass spectrometry. Analytica Chimica Acta, 2010, 675, 148-155.	5.4	68
36	Relationship between the kinetics of β-carotene degradation and formation of norisoprenoids in the storage of dried sweet potato chips. Food Chemistry, 2010, 121, 348-357.	8.2	80

#	Article	IF	CITATIONS
37	Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chemistry, 2010, 123, 558-562.	8.2	53
38	Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L) in Camargue (France). Field Crops Research, 2010, 117, 154-160.	5.1	77
39	Odor-Active Compounds in Cooked Rice Cultivars from Camargue (France) Analyzed by GCâ^'O and GCâî'MS. Journal of Agricultural and Food Chemistry, 2008, 56, 5291-5298.	5.2	87
40	Rapid Discrimination of Scented Rice by Solid-Phase Microextraction, Mass Spectrometry, and Multivariate Analysis Used as a Mass Sensor. Journal of Agricultural and Food Chemistry, 2007, 55, 1077-1083.	5.2	65
41	Impact of "ecological―post-harvest processing on the volatile fraction of coffee beans: I. Green coffee. Journal of Food Composition and Analysis, 2007, 20, 289-296.	3.9	101
42	Impact of "ecological―post-harvest processing on coffee aroma: II. Roasted coffee. Journal of Food Composition and Analysis, 2007, 20, 297-307.	3.9	98
43	Characterization of the seed oils from kiwi (<i>Actinidia chinensis</i>), passion fruit (<i>Passiflora) Tj ETQq1 1 (</i>).784314 r 0.2	gBT /Overlock
44	Aroma characterization of various apricot varieties using headspace–solid phase microextraction combined with gas chromatography–mass spectrometry and gas chromatography–olfactometry. Food Chemistry, 2006, 96, 147-155.	8.2	111
45	Synthesis of pyroglutamic acid fatty esters through lipase-catalyzed esterification with medium chains alcohols. Enzyme and Microbial Technology, 2003, 33, 79-84.	3.2	24
46	Changes of Volatile Compounds during Heating of Bacuri Pulp. Journal of Agricultural and Food Chemistry, 2001, 49, 5911-5915.	5.2	11
47	Identification of the aroma components of acerola (Malphigia glabra L.): free and bound flavour compounds. Food Chemistry, 2001, 74, 209-216.	8.2	57
48	Free and bound flavour components of Amazonian fruits: 2. cupua�u volatile compounds. Flavour and Fragrance Journal, 2000, 15, 251-257.	2.6	34
49	Free and bound flavour components of Amazonian fruits 3-glycosidically bound components of cupuacu. Food Chemistry, 2000, 70, 463-470.	8.2	31
50	Enzymatic hydrolysis of edible Passiflora fruit glycosides. Food Chemistry, 1999, 66, 281-288.	8.2	27
51	Free and bound flavour components of amazonian fruits. 1: Bacuri. Flavour and Fragrance Journal, 1999, 14, 303-311.	2.6	33