
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2105870/publications.pdf Version: 2024-02-01

HWE PUDOLDH

#	Article	IF	CITATIONS
1	Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes. Nature, 1999, 401, 796-800.	13.7	1,136
2	Molecular and Neuronal Substrate for the Selective Attenuation of Anxiety. Science, 2000, 290, 131-134.	6.0	866
3	Molecular and neuronal substrates for general anaesthetics. Nature Reviews Neuroscience, 2004, 5, 709-720.	4.9	672
4	Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nature Reviews Drug Discovery, 2011, 10, 685-697.	21.5	579
5	General anesthetic actionsin vivostrongly attenuated by a point mutation in the GABAAreceptor \hat{l}^23 subunit. FASEB Journal, 2003, 17, 250-252.	0.2	531
6	ANALYSIS OFGABAARECEPTORFUNCTION ANDDISSECTION OF THEPHARMACOLOGY OFBENZODIAZEPINES ANDGENERALANESTHETICSTHROUGHMOUSEGENETICS. Annual Review of Pharmacology and Toxicology, 2004, 44, 475-498.	4.2	516
7	GABA-based therapeutic approaches: GABAA receptor subtype functions. Current Opinion in Pharmacology, 2006, 6, 18-23.	1.7	443
8	Specific GABAA Circuits for Visual Cortical Plasticity. Science, 2004, 303, 1681-1683.	6.0	439
9	Reversal of pathological pain through specific spinal GABAA receptor subtypes. Nature, 2008, 451, 330-334.	13.7	386
10	GABA _A Receptor Subtypes: Therapeutic Potential in Down Syndrome, Affective Disorders, Schizophrenia, and Autism. Annual Review of Pharmacology and Toxicology, 2014, 54, 483-507.	4.2	273
11	Mechanism of action of the hypnotic zolpidem in vivo. British Journal of Pharmacology, 2000, 131, 1251-1254.	2.7	265
12	Molecular Targets for the Myorelaxant Action of Diazepam. Molecular Pharmacology, 2001, 59, 442-445.	1.0	207
13	Pharmacology of recombinant Î ³ -aminobutyric acidAreceptors rendered diazepam-insensitive by point-mutated α-subunits. FEBS Letters, 1998, 431, 400-404.	1.3	168
14	Regulating anxiety with extrasynaptic inhibition. Nature Neuroscience, 2015, 18, 1493-1500.	7.1	158
15	Specific Subtypes of GABAA Receptors Mediate Phasic and Tonic Forms of Inhibition in Hippocampal Pyramidal Neurons. Journal of Neurophysiology, 2006, 96, 846-857.	0.9	149
16	An Emerging Circuit Pharmacology of GABAA Receptors. Trends in Pharmacological Sciences, 2018, 39, 710-732.	4.0	147
17	Requirement of Â5-GABAA Receptors for the Development of Tolerance to the Sedative Action of Diazepam in Mice. Journal of Neuroscience, 2004, 24, 6785-6790.	1.7	138
18	Molecular determinants for the action of general anesthetics at recombinant alpha2beta3gamma2 gamma-aminobutyric acidA receptors. Journal of Neurochemistry, 2002, 80, 140-148.	2.1	130

#	Article	IF	CITATIONS
19	GABAA receptors containing the alpha5 subunit mediate the trace effect in aversive and appetitive conditioning and extinction of conditioned fear. European Journal of Neuroscience, 2004, 20, 1928-1936.	1.2	124
20	Independent assembly and subcellular targeting of GABAA-receptor subtypes demonstrated in mouse hippocampal and olfactory neurons in vivo. Neuroscience Letters, 1998, 249, 99-102.	1.0	97
21	Genuine antihyperalgesia by systemic diazepam revealed by experiments in GABAA receptor point-mutated mice. Pain, 2009, 141, 233-238.	2.0	96
22	Presynaptic α2-GABA _A Receptors in Primary Afferent Depolarization and Spinal Pain Control. Journal of Neuroscience, 2011, 31, 8134-8142.	1.7	96
23	Antidepressant-like properties of α2-containing GABAA receptors. Behavioural Brain Research, 2011, 217, 77-80.	1.2	92
24	GABA _A Receptor α5 Subunits Contribute to GABA _{A,slow} Synaptic Inhibition in Mouse Hippocampus. Journal of Neurophysiology, 2009, 101, 1179-1191.	0.9	91
25	Dynamic GABA _A Receptor Subtype-Specific Modulation of the Synchrony and Duration of Thalamic Oscillations. Journal of Neuroscience, 2003, 23, 3649-3657.	1.7	86
26	Analgesia and unwanted benzodiazepine effects in point-mutated mice expressing only one benzodiazepine-sensitive GABAA receptor subtype. Nature Communications, 2015, 6, 6803.	5.8	85
27	Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice. Neuropharmacology, 2012, 63, 250-258.	2.0	77
28	Analysis of the Presence and Abundance of GABAA Receptors Containing Two Different Types of α Subunits in Murine Brain Using Point-mutated α Subunits. Journal of Biological Chemistry, 2004, 279, 43654-43660.	1.6	72
29	Tonic Inhibitory Control of Dentate Gyrus Granule Cells by α5-Containing GABA _A Receptors Reduces Memory Interference. Journal of Neuroscience, 2015, 35, 13698-13712.	1.7	72
30	Alteration of GABAergic synapses and gephyrin clusters in the thalamic reticular nucleus of GABAAreceptor α3 subunit-null mice. European Journal of Neuroscience, 2006, 24, 1307-1315.	1.2	68
31	Modulation of anxiety and fear via distinct intrahippocampal circuits. ELife, 2016, 5, e14120.	2.8	65
32	A gain in GABA _A receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7630-7635.	3.3	61
33	Molecular and Functional Diversity of GABA-A Receptors in the Enteric Nervous System of the Mouse Colon. Journal of Neuroscience, 2014, 34, 10361-10378.	1.7	58
34	Resolving differences in GABAA receptor mutant mouse studies. Nature Neuroscience, 2000, 3, 1059-1059.	7.1	53
35	Mutational analysis of molecular requirements for the actions of general anaesthetics at the gamma-aminobutyric acidA receptor subtype, alpha1beta2gamma2. BMC Pharmacology, 2003, 3, 13.	0.4	52
36	A Pharmacogenetic â€~Restriction-of-Function' Approach Reveals Evidence for Anxiolytic-Like Actions Mediated by α5-Containing GABAA Receptors in Mice. Neuropsychopharmacology, 2016, 41, 2492-2501.	2.8	45

#	Article	IF	CITATIONS
37	Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites. Neuropsychopharmacology, 2014, 39, 477-487.	2.8	43
38	Astrocytes in primary cultures express serine racemase, synthesize d -serine and acquire A1 reactive astrocyte features. Biochemical Pharmacology, 2018, 151, 245-251.	2.0	43
39	Compromising the phosphodependent regulation of the GABA _A R β3 subunit reproduces the core phenotypes of autism spectrum disorders. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14805-14810.	3.3	41
40	GABAA Receptor Subtypes Regulate Stress-Induced Colon Inflammation in Mice. Gastroenterology, 2018, 155, 852-864.e3.	0.6	36
41	Alterations in Brain-Derived Neurotrophic Factor in the Mouse Hippocampus Following Acute but Not Repeated Benzodiazepine Treatment. PLoS ONE, 2013, 8, e84806.	1.1	35
42	Neural Basis of Benzodiazepine Reward: Requirement for α2 Containing GABAA Receptors in the Nucleus Accumbens. Neuropsychopharmacology, 2014, 39, 1805-1815.	2.8	35
43	Itch suppression in mice and dogs by modulation of spinal α2 and α3GABAA receptors. Nature Communications, 2018, 9, 3230.	5.8	34
44	Disinhibition, an emerging pharmacology of learning and memory. F1000Research, 2017, 6, 101.	0.8	33
45	Targeted Treatment of Individuals With Psychosis Carrying a Copy Number Variant Containing a Genomic Triplication of the Glycine Decarboxylase Gene. Biological Psychiatry, 2019, 86, 523-535.	0.7	32
46	Distinct actions of etomidate and propofol at β3-containing γ-aminobutyric acid type A receptors. Neuropharmacology, 2009, 57, 446-455.	2.0	31
47	Etomidate Impairs Long-Term Potentiation In Vitro by Targeting Â5-Subunit Containing GABAA Receptors on Nonpyramidal Cells. Journal of Neuroscience, 2015, 35, 9707-9716.	1.7	30
48	Long-term diazepam treatment enhances microglial spine engulfment and impairs cognitive performance via the mitochondrial 18 kDa translocator protein (TSPO). Nature Neuroscience, 2022, 25, 317-329.	7.1	29
49	The heterogeneity in GABAA receptor-mediated IPSC kinetics reflects heterogeneity of subunit composition among inhibitory and excitatory interneurons in spinal lamina II. Frontiers in Cellular Neuroscience, 2014, 8, 424.	1.8	28
50	Affective and cognitive effects of global deletion of α3-containing gamma-aminobutyric acid-A receptors. Behavioural Pharmacology, 2008, 19, 582-596.	0.8	26
51	Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Human Mutation, 2018, 39, 939-946.	1.1	26
52	Behavioral Functions of GABAA Receptor Subtypes - The Zurich Experience. Advances in Pharmacology, 2015, 72, 37-51.	1.2	25
53	The clobazam metabolite N-desmethyl clobazam is an α2 preferring benzodiazepine with an improved therapeutic window for antihyperalgesia. Neuropharmacology, 2016, 109, 366-375.	2.0	25
54	Identification of intraneuronal amyloid beta oligomers in locus coeruleus neurons of Alzheimer's patients and their potential impact on inhibitory neurotransmitter receptors and neuronal excitability. Neuropathology and Applied Neurobiology, 2021, 47, 488-505.	1.8	25

#	Article	IF	CITATIONS
55	Differential depression of neuronal network activity by midazolam and its main metabolite 1-hydroxymidazolam in cultured neocortical slices. Scientific Reports, 2017, 7, 3503.	1.6	20
56	Dissecting the role of diazepam-sensitive γ-aminobutyric acid type A receptors in defensive behavioral reactivity to mild threat. Pharmacology Biochemistry and Behavior, 2013, 103, 541-549.	1.3	19
57	Identification and characterization of anesthetic targets by mouse molecular genetics approaches. Canadian Journal of Anaesthesia, 2011, 58, 178-190.	0.7	18
58	Bidirectional regulation of distinct memory domains by α5-subunit-containing GABA _A receptors in CA1 pyramidal neurons. Learning and Memory, 2020, 27, 423-428.	0.5	18
59	α2-containing GABA(A) receptors: a requirement for midazolam-escalated aggression and social approach in mice. Psychopharmacology, 2015, 232, 4359-4369.	1.5	17
60	Partial inactivation of <scp>GABA_A</scp> receptors containing the α5 subunit affects the development of adultâ€born dentate gyrus granule cells. European Journal of Neuroscience, 2016, 44, 2258-2271.	1.2	16
61	Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus. Brain Structure and Function, 2015, 220, 2739-2763.	1.2	15
62	Enhancing the function of alpha5-subunit-containing GABAA receptors promotes action potential firing of neocortical neurons during up-states. European Journal of Pharmacology, 2013, 703, 18-24.	1.7	14
63	Activity Patterns in the Prefrontal Cortex and Hippocampus during and after Awakening from Etomidate Anesthesia. Anesthesiology, 2010, 113, 48-57.	1.3	14
64	Negative Allosteric Modulation of Gamma-Aminobutyric Acid A Receptors at α5 Subunit–Containing Benzodiazepine Sites Reverses Stress-Induced Anhedonia and Weakened Synaptic Function in Mice. Biological Psychiatry, 2022, 92, 216-226.	0.7	14
65	Early postnatal switch in GABA _A receptor α-subunits in the reticular thalamic nucleus. Journal of Neurophysiology, 2016, 115, 1183-1195.	0.9	13
66	Diversity of Neuronal Inhibition. JAMA Psychiatry, 2014, 71, 91.	6.0	12
67	Divergent Levels of Marker Chromosomes in an hiPSC-Based Model ofÂPsychosis. Stem Cell Reports, 2017, 8, 519-528.	2.3	11
68	Effects of <i>Gabra2</i> Point Mutations on Alcohol Intake: Increased Binge‣ike and Blunted Chronic Drinking by Mice. Alcoholism: Clinical and Experimental Research, 2016, 40, 2445-2455.	1.4	10
69	Effects of Diazepam on Low-Frequency and High-Frequency Electrocortical γ-Power Mediated by α1- and α2-GABAA Receptors. International Journal of Molecular Sciences, 2019, 20, 3486.	1.8	10
70	TP003 is a non-selective benzodiazepine site agonist that induces anxiolysis via α2GABAA receptors. Neuropharmacology, 2018, 143, 71-78.	2.0	9
71	Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Reports, 2021, 34, 108858.	2.9	9
72	Identification of Molecular Substrate for the Attenuation of Anxiety: A Step Toward the Development of Better Anti-Anxiety Drugs. Scientific World Journal, The, 2001, 1, 192-193.	0.8	8

#	Article	IF	CITATIONS
73	Prodepressant- and anxiogenic-like effects of serotonin-selective, but not noradrenaline-selective, antidepressant agents in mice lacking α2-containing GABAA receptors. Behavioural Brain Research, 2017, 332, 172-179.	1.2	8
74	α2-containing γ-aminobutyric acid type A receptors promote stress resiliency in male mice. Neuropsychopharmacology, 2021, 46, 2197-2206.	2.8	6
75	Modulating anxiety and activity. Science, 2019, 366, 185-186.	6.0	5
76	Zolpidem Activation of Alpha 1-Containing GABAA Receptors Selectively Inhibits High Frequency Action Potential Firing of Cortical Neurons. Frontiers in Pharmacology, 2018, 9, 1523.	1.6	5
77	Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. Current Biology, 2021, 31, 4314-4326.e5.	1.8	5
78	Midazolam at Low Nanomolar Concentrations Affects Long-term Potentiation and Synaptic Transmission Predominantly via the α1–γ-Aminobutyric Acid Type A Receptor Subunit in Mice. Anesthesiology, 2022, 136, 954-969.	1.3	5
79	Propofol Affects Cortico-Hippocampal Interactions via β3 Subunit-Containing GABAA Receptors. International Journal of Molecular Sciences, 2020, 21, 5844.	1.8	3
80	GABA _A receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
81	GABA _A receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2