## Sergei Vlassov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2105847/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Kinking in Semiconductor Nanowires: A Review. Crystal Growth and Design, 2022, 22, 871-892.                                                                                                                                              | 1.4 | 6         |
| 2  | Unraveling the Structure and Properties of Layered and Mixed ReO <sub>3</sub> –WO <sub>3</sub><br>Thin Films Deposited by Reactive DC Magnetron Sputtering. ACS Omega, 2022, 7, 1827-1837.                                               | 1.6 | 3         |
| 3  | Antimicrobial Activity of Commercial Photocatalytic SaniTiseâ,"¢ Window Glass. Catalysts, 2022, 12, 197.                                                                                                                                 | 1.6 | 5         |
| 4  | Thermal, Mechanical, and Acoustic Properties of Polydimethylsiloxane Filled with Hollow Glass<br>Microspheres. Materials, 2022, 15, 1652.                                                                                                | 1.3 | 8         |
| 5  | CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst. Journal of CO2 Utilization, 2022, 59, 101937.                                                                                                  | 3.3 | 12        |
| 6  | The role of Al2O3 interlayer in the synthesis of ZnS/Al2O3/MoS2 core-shell nanowires. Journal of Alloys and Compounds, 2022, 918, 165648.                                                                                                | 2.8 | 4         |
| 7  | Preparation of functional Ga2S3 and Ga2Se3 shells around Ga2O3 nanowires via sulfurization or selenization. Optical Materials, 2022, 131, 112675.                                                                                        | 1.7 | 1         |
| 8  | Low-density PDMS foams by controlled destabilization of thixotropic emulsions. Journal of Colloid and Interface Science, 2022, 626, 265-275.                                                                                             | 5.0 | 8         |
| 9  | Application of polydimethylsiloxane in photocatalyst composite materials: A review. Reactive and Functional Polymers, 2021, 158, 104781.                                                                                                 | 2.0 | 27        |
| 10 | Iron ontaining Nitrogenâ€Doped Carbon Nanomaterials Prepared via NaCl Template as Efficient<br>Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2288-2297.                                                  | 1.7 | 7         |
| 11 | Silver Nanowireâ€Based Catalysts for Oxygen Reduction Reaction in Alkaline Solution. ChemCatChem, 2021, 13, 4364-4371.                                                                                                                   | 1.8 | 10        |
| 12 | The Adhesionâ€Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators.<br>Macromolecular Materials and Engineering, 2020, 305, 1900638.                                                                          | 1.7 | 21        |
| 13 | Fused Hybrid Linkers for Metal–Organic Framework-Derived Bifunctional Oxygen Electrocatalysts.<br>ACS Applied Energy Materials, 2020, 3, 152-157.                                                                                        | 2.5 | 19        |
| 14 | Understanding the Conversion Process of Magnetron-Deposited Thin Films of Amorphous<br>ReO <sub><i>x</i></sub> to Crystalline ReO <sub>3</sub> upon Thermal Annealing. Crystal Growth and<br>Design, 2020, 20, 6147-6156.                | 1.4 | 3         |
| 15 | Transparent ZnO-coated polydimethylsiloxane-based material for photocatalytic purification applications. Journal of Coatings Technology Research, 2020, 17, 573-579.                                                                     | 1.2 | 8         |
| 16 | The effect of heat treatment on the morphology and mobility of Au nanoparticles. Beilstein Journal of Nanotechnology, 2020, 11, 61-67.                                                                                                   | 1.5 | 4         |
| 17 | Hydrophilic polydimethylsiloxane-based sponges for dewatering applications. Materials Letters, 2020, 263, 127278.                                                                                                                        | 1.3 | 7         |
| 18 | Stronger Reductive Environment in Solvothermal Synthesis Leads to Improved Ga Doping Efficiency in ZnO Nanocrystals and Enhanced Plasmonic Absorption. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900335. | 0.8 | 0         |

SERGEI VLASSOV

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Sol-gel auto-combustion synthesis of Ca2Fe2O5 brownmillerite nanopowders and thin films for<br>advanced oxidation photoelectrochemical water treatment in visible light. Journal of Environmental<br>Chemical Engineering, 2019, 7, 103224. | 3.3 | 14        |
| 20 | Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study. Micron, 2019, 124, 102686.                                                                                            | 1.1 | 7         |
| 21 | Abrupt elastic-to-plastic transition in pentagonal nanowires under bending. Beilstein Journal of<br>Nanotechnology, 2019, 10, 2468-2476.                                                                                                    | 1.5 | 3         |
| 22 | High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. International Journal of Hydrogen Energy, 2019, 44, 12636-12648.                       | 3.8 | 38        |
| 23 | Low-friction nanojoint prototype. Nanotechnology, 2018, 29, 195707.                                                                                                                                                                         | 1.3 | 1         |
| 24 | Iron and Nitrogen Coâ€doped Carbideâ€Derived Carbon and Carbon Nanotube Composite Catalysts for<br>Oxygen Reduction Reaction. ChemElectroChem, 2018, 5, 1827-1836.                                                                          | 1.7 | 42        |
| 25 | Fast-Response Single-Nanowire Photodetector Based on ZnO/WS <sub>2</sub> Core/Shell<br>Heterostructures. ACS Applied Materials & Interfaces, 2018, 10, 13869-13876.                                                                         | 4.0 | 60        |
| 26 | Au nanowire junction breakup through surface atom diffusion. Nanotechnology, 2018, 29, 015704.                                                                                                                                              | 1.3 | 27        |
| 27 | Adhesion and Mechanical Properties of PDMS-Based Materials Probed with AFM: A Review. Reviews on Advanced Materials Science, 2018, 56, 62-78.                                                                                               | 1.4 | 36        |
| 28 | Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips:<br>role of ligands and capillary forces. Beilstein Journal of Nanotechnology, 2018, 9, 660-670.                                            | 1.5 | 14        |
| 29 | Formation and characterization of microcantilevers produced from ionic liquid by electron beam irradiation. Journal of Molecular Liquids, 2017, 229, 45-50.                                                                                 | 2.3 | 3         |
| 30 | A comparative study of heterostructured CuO/CuWO4 nanowires and thin films. Journal of Crystal Growth, 2017, 480, 78-84.                                                                                                                    | 0.7 | 17        |
| 31 | Enhanced flexibility and electron-beam-controlled shape recovery in alumina-coated Au and Ag<br>core–shell nanowires. Nanotechnology, 2017, 28, 505707.                                                                                     | 1.3 | 15        |
| 32 | Mechanical properties of individual fiber segments of electrospun lignocelluloseâ€reinforced poly(vinyl alcohol). Journal of Applied Polymer Science, 2017, 134, .                                                                          | 1.3 | 6         |
| 33 | Synthesis and characterization of ZnO/ZnS/MoS2 core-shell nanowires. Journal of Crystal Growth, 2017, 459, 100-104.                                                                                                                         | 0.7 | 20        |
| 34 | Phosphonium-based ionic liquids mixed with stabilized oxide nanoparticles as highly promising lubricating oil additives. Proceedings of the Estonian Academy of Sciences, 2017, 66, 174.                                                    | 0.9 | 4         |
| 35 | Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations. Nanotechnology, 2016, 27, 335701.                                                                                                | 1.3 | 19        |
| 36 | Effect of cobalt doping on the mechanical properties of ZnO nanowires. Materials Characterization, 2016, 121, 40-47.                                                                                                                        | 1.9 | 8         |

SERGEI VLASSOV

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Unexpected Epitaxial Growth of a Few WS <sub>2</sub> Layers on {11i00} Facets of ZnO Nanowires.<br>Journal of Physical Chemistry C, 2016, 120, 21451-21459.                                             | 1.5 | 22        |
| 38 | Structural factor in bending testing of fivefold twinned nanowires revealed by finite element analysis. Physica Scripta, 2016, 91, 115701.                                                              | 1.2 | 4         |
| 39 | Mechanical and structural characterizations of gamma- and alpha-alumina nanofibers. Materials<br>Characterization, 2015, 107, 119-124.                                                                  | 1.9 | 25        |
| 40 | Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth. Applied Surface Science, 2015, 346, 423-427.                                                      | 3.1 | 9         |
| 41 | Phase transformations in icosahedral small copper particles during their annealing in different gas media. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1098-1100.                   | 0.1 | 1         |
| 42 | Elastic Properties of Oxide Nanowhiskers Prepared from Electrolytically Deposited Copper. Russian<br>Physics Journal, 2015, 58, 843-847.                                                                | 0.2 | 1         |
| 43 | Metal nanodumbbells for nanomanipulations and tribological experiments. Physica Scripta, 2015, 90,<br>094007.                                                                                           | 1.2 | 4         |
| 44 | Plasmonic photoluminescence enhancement by silver nanowires. Physica Scripta, 2015, 90, 094008.                                                                                                         | 1.2 | 2         |
| 45 | Mechanical characterization of TiO2 nanofibers produced by different electrospinning techniques.<br>Materials Characterization, 2015, 100, 98-103.                                                      | 1.9 | 25        |
| 46 | Electron beam induced growth of silver nanowhiskers. Journal of Crystal Growth, 2015, 410, 63-68.                                                                                                       | 0.7 | 11        |
| 47 | Mechanical properties of sol–gel derived SiO <sub>2</sub> nanotubes. Beilstein Journal of<br>Nanotechnology, 2014, 5, 1808-1814.                                                                        | 1.5 | 9         |
| 48 | Shape Restoration Effect in Ag–SiO <sub>2</sub> Core–Shell Nanowires. Nano Letters, 2014, 14,<br>5201-5205.                                                                                             | 4.5 | 26        |
| 49 | Some aspects of formation and tribological properties of silver nanodumbbells. Nanoscale Research<br>Letters, 2014, 9, 186.                                                                             | 3.1 | 11        |
| 50 | Elasticity and yield strength of pentagonal silver nanowires: In situ bending tests. Materials<br>Chemistry and Physics, 2014, 143, 1026-1031.                                                          | 2.0 | 50        |
| 51 | Analysis of static friction and elastic forces in a nanowire bent on a flat surface: A comparative study. Tribology International, 2014, 72, 31-34.                                                     | 3.0 | 15        |
| 52 | Manipulation of nanoparticles of different shapes inside a scanning electron microscope. Beilstein<br>Journal of Nanotechnology, 2014, 5, 133-140.                                                      | 1.5 | 24        |
| 53 | Realâ€ŧime manipulation of ZnO nanowires on a flat surface employed for tribological measurements:<br>Experimental methods and modeling. Physica Status Solidi (B): Basic Research, 2013, 250, 305-317. | 0.7 | 26        |
| 54 | Integrated carbon nanotube fibre–quartz tuning fork biosensor. Proceedings of the Estonian<br>Academy of Sciences, 2012, 61, 48.                                                                        | 0.9 | 4         |

SERGEI VLASSOV

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface.<br>Journal of Materials Research, 2012, 27, 580-585.                       | 1.2 | 22        |
| 56 | In situ measurements of ultimate bending strength of CuO and ZnO nanowires. European Physical<br>Journal B, 2012, 85, 1.                                                    | 0.6 | 19        |
| 57 | The effect of substrate roughness on the static friction of CuO nanowires. Surface Science, 2012, 606, 1393-1399.                                                           | 0.8 | 23        |
| 58 | Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron, 2012, 43, 1140-1146.                          | 1.1 | 11        |
| 59 | Application of Tuning Fork Sensors for In-situ Studies of Dynamic Force Interactions Inside Scanning and Transmission Electron Microscopes. Medziagotyra, 2012, 18, .       | 0.1 | 1         |
| 60 | Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Communications, 2011, 151, 1244-1247. | 0.9 | 22        |
| 61 | Real-time manipulation of gold nanoparticles inside a scanning electron microscope. Solid State Communications, 2011, 151, 688-692.                                         | 0.9 | 17        |
| 62 | Pentagonal Nanorods and Nanoparticles with Mismatched Shell Layers. Journal of Nanoscience and Nanotechnology, 2010, 10, 6136-6143.                                         | 0.9 | 9         |
| 63 | Crystal mismatched layers in pentagonal nanorods and nanoparticles. Physica Status Solidi (B): Basic<br>Research, 2010, 247, 288-298.                                       | 0.7 | 24        |
| 64 | Sol-Gel Derived SnO2 Nanometric Fibers. Materials Research Society Symposia Proceedings, 2007, 1017,<br>111.                                                                | 0.1 | 0         |