
Mario OrdoÃ'ez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2105511/publications.pdf Version: 2024-02-01

MARIO ORDOÃ'EZ

#	Article	IF	CITATIONS
1	An overview of stereoselective synthesis of α-aminophosphonic acids and derivatives. Tetrahedron, 2009, 65, 17-49.	1.9	256
2	Stereoselective synthesis of \hat{I}^3 -amino acids. Tetrahedron: Asymmetry, 2007, 18, 3-99.	1.8	240
3	Recent progress on the stereoselective synthesis of cyclic quaternary α-amino acids. Tetrahedron: Asymmetry, 2009, 20, 1-63.	1.8	213
4	Synthesis of quaternary $\hat{l}\pm$ -aminophosphonic acids. Tetrahedron, 2012, 68, 6369-6412.	1.9	82
5	An update on the stereoselective synthesis of α-aminophosphonic acids and derivatives. Tetrahedron, 2015, 71, 1745-1784.	1.9	82
6	An update on the stereoselective synthesis of \hat{I}^3 -amino acids. Tetrahedron: Asymmetry, 2016, 27, 999-1055.	1.8	61
7	Stereoselective Synthesis of α-Aminophosphonic Acids Analogs of the 20 Proteinogenic α-Amino Acids. Current Organic Synthesis, 2012, 9, 310-341.	1.3	47
8	Practical and high stereoselective synthesis of 3-(arylmethylene)isoindolin-1-ones from 2-formylbenzoic acid. Tetrahedron Letters, 2012, 53, 5756-5758.	1.4	46
9	Stereoselective synthesis of acyclic α,α-disubstituted α-amino acids derivatives from amino acids templates. Tetrahedron, 2020, 76, 130875.	1.9	36
10	One-pot three-component highly diastereoselective synthesis of isoindolin-1-one-3-phosphonates under solvent and catalyst free-conditions. Tetrahedron: Asymmetry, 2011, 22, 1479-1484.	1.8	30
11	Synthesis of Phosphoproline Derivatives with an Octahydroisoindole Structure. European Journal of Organic Chemistry, 2011, 2011, 6732-6738.	2.4	28
12	Stereodivergent Synthesis of Two Novel αâ€Aminophosphonic Acids Characterised by a <i>cis</i> â€Fused Octahydroindole System. European Journal of Organic Chemistry, 2011, 2011, 3074-3081.	2.4	27
13	An Easy Approach for the Synthesis of N-Substituted Isoindolin-1-ones. Synthesis, 2012, 2012, 569-574.	2.3	27
14	Practical and Efficient Synthesis of α-Aminophosphonic Acids Containing 1,2,3,4-Tetrahydroquinoline or 1,2,3,4-Tetrahydroisoquinoline Heterocycles. Molecules, 2016, 21, 1140.	3.8	26
15	Uncatalyzed Oneâ€Pot Diastereoselective Synthesis of αâ€Amino Phosphonates Under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2010, 2010, 6573-6581.	2.4	25
16	Phenylphosphonic Acid as Efficient and Recyclable Catalyst in the Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Synlett, 2014, 25, 1145-1149.	1.8	25
17	Stereoselective Synthesis of α-Amino-C-phosphinic Acids and Derivatives. Molecules, 2016, 21, 1141.	3.8	24
18	Phenylboronic Acid as Efficient and Eco-Friendly Catalyst for the One-Pot, Three-Component Synthesis of α-Aminophosphonates under Solvent-Free Conditions. Synlett, 2012, 23, 1931-1936.	1.8	21

Mario OrdoÑez

#	Article	IF	CITATIONS
19	Convenient Synthesis of Cyclic αâ€Aminophosphonates by Alkylation–Cyclization Reaction of Iminophosphoglycinates Using Phaseâ€Transfer Catalysis. European Journal of Organic Chemistry, 2016, 2016, 308-313.	2.4	19
20	Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 821-825.	2.2	19
21	A convenient method for the preparation of chiral phosphonoacetamides and their Horner–Wadsworth–Emmons reaction. Tetrahedron: Asymmetry, 2007, 18, 2427-2436.	1.8	18
22	000Synthesis of new α-aminophosphonates: Evaluation as anti-inflammatory agents and QSAR studies. Bioorganic and Medicinal Chemistry, 2019, 27, 2376-2386.	3.0	17
23	Diastereoselective synthesis of novel 5-substituted morpholine-3-phosphonic acids: further exploitation of N-acyliminium intermediates. Tetrahedron: Asymmetry, 2014, 25, 485-487.	1.8	16
24	Efficient Synthesis of β-Aryl-γ-lactams and Their Resolution with (S)-Naproxen: Preparation of (R)- and (S)-Baclofen. Molecules, 2015, 20, 22028-22043.	3.8	16
25	First and Highly Stereoselective Synthesis of Both Enantiomers of Octahydroindoleâ€2â€phosphonic Acid (Oic ^P). European Journal of Organic Chemistry, 2017, 2017, 6781-6787.	2.4	16
26	Efficient PhB(OH)2-catalyzed one-pot synthesis of 3-substituted isoindolin-1-ones and isobenzofuran-1(3H)-ones under solvent free conditions. Tetrahedron, 2018, 74, 4174-4181.	1.9	15
27	Synthesis of 3-alkylideneisoindolinones and isoindolones by a Horner–Wadsworth–Emmons reaction. Monatshefte Für Chemie, 2014, 145, 1001-1007.	1.8	14
28	First Synthesis of (<i>R</i>)―and (<i>S</i>)â€1,2,3,4â€Tetrahydroisoquinolineâ€3â€phosphonic Acid (Tic ^P) Using a Pictet–Spengler Reaction. European Journal of Organic Chemistry, 2016, 2016, 2711-2719.	2.4	13
29	First Practical and Efficient Synthesis of 3â€Phosphorylated βâ€Carboline Derivatives Using the Pictet–Spengler Reaction. European Journal of Organic Chemistry, 2015, 2015, 1084-1091.	2.4	11
30	Synthesis of \hat{I}^2 -hydroxyacetamides from unactivated ethyl acetates under base-free conditions and microwave irradiation. Tetrahedron: Asymmetry, 2015, 26, 73-78.	1.8	10
31	A Straightforward Synthesis of Sixâ€Memberedâ€Ring Heterocyclic αâ€Aminophosphonic Acids from <i>N</i> â€Acyliminium Ions. Journal of Heterocyclic Chemistry, 2019, 56, 2068-2073.	2.6	9
32	Study of the fragmentation pathway of αâ€aminophosphonates by chemical ionization and fast atom bombardment mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 951-959.	1.5	8
33	Novel naphthalimide–aminobenzamide dyads as <i>OFF/ON</i> fluorescent supramolecular receptors in metal ion binding. Supramolecular Chemistry, 2016, 28, 892-906.	1.2	8
34	Practical Synthesis of 1,2,3,4-Tetrahydroisoquinoline-1-phosphonic and -1-phosphinic Acids through Kabachnik–Fields and Aza-Pudovik Reaction. Synthesis, 2020, 52, 769-774.	2.3	8
35	Stereoselective Synthesis of α-Amino-H-phosphinic Acids and Derivatives. Synthesis, 2017, 49, 987-997.	2.3	7
36	Highly Diastereoselective Synthesis of Cyclic αâ€Aminophosphonic and αâ€Aminophosphinic Acids from Glycylâ€ <scp>l</scp> â€Proline 2,5â€Diketopiperazine. European Journal of Organic Chemistry, 2019, 2019, 7378-7383.	2.4	7

Mario OrdoÑez

#	Article	IF	CITATIONS
37	Synthesis of Chiral 1,4,2-Oxazaphosphepines. Molecules, 2015, 20, 13794-13813.	3.8	6
38	Synthesis and anion recognition studies of new ureylbenzamide-based receptors. Supramolecular Chemistry, 2018, 30, 9-19.	1.2	6
39	Synthesis, characterization and anion recognition studies of new fluorescent alkyl bis(naphthylureylbenzamide)-based receptors. Tetrahedron, 2020, 76, 130815.	1.9	6
40	Practical synthesis of 3-(2-arylethylidene)isoindolin-1-ones (analogues of AKS-182) and 3-(2-arylethylidene)isobenzofuran-1(3H)-ones. Tetrahedron, 2020, 76, 130838.	1.9	6
41	New approaches towards the synthesis of 1,2,3,4-tetrahydro isoquinoline-3-phosphonic acid (TicP). Amino Acids, 2021, 53, 451-459.	2.7	6
42	Experimental and theoretical study of novel aminobenzamide–aminonaphthalimide fluorescent dyads with a FRET mechanism. RSC Advances, 2022, 12, 6192-6204.	3.6	6
43	Practical and efficient synthesis of chiral 2,4-disubstituted oxazolines from β-phosphonoamides. Tetrahedron: Asymmetry, 2014, 25, 156-162.	1.8	5
44	Practical synthesis of novel phosphonopeptides containing Aib ^P . Journal of Peptide Science, 2016, 22, 70-75.	1.4	4
45	Reactions of Piperazin-2-one, Morpholin-3-one, and Thiomorpholin-3-one with Triethyl Phosphite Prompted by Phosphoryl Chloride: Scope and Limitations. ACS Omega, 2019, 4, 9056-9064.	3.5	4
46	First practical synthesis of novel 1â€phosphonylated pyrrolo[1,2â€≺i>a]pyrazine derivatives. Heteroatom Chemistry, 2017, 28, .	0.7	3
47	Synthesis and anion recognition studies of new oligomethylene bis(nitrophenylureylbenzamide) receptors. RSC Advances, 2019, 9, 39147-39162.	3.6	3
48	Synthesis of phthalimides, isoindolin-1-ones and isoindolines bearing aminobenzoic acids as a new fluorescent compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 413, 113185.	3.9	3
49	Synthesis and recognizing Copper (II) properties of 1,5â€disubstituted tetrazoleâ€indolizineÂbisâ€heterocycles. European Journal of Organic Chemistry, 0, , .	2.4	3
50	Diastereoselective Phosphonylation of Chiral Cyclic Imines for the Synthesis of Phosphoproline Derivatives. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
51	Stereocontrolled Synthesis of Enantiopure <i>cis</i> -Fused Octahydroisoindolones via Chiral Oxazoloisoindolone Lactams. Journal of Organic Chemistry, 2021, 86, 16361-16368.	3.2	2
52	An efficient synthesis of cis-4-hydroxyphosphonic and cis-4-hydroxyphosphinic analogs of pipecolic acid from cyclic enaminones. Amino Acids, 2022, 54, 299-310.	2.7	2
53	Stereoselective Synthesis of αâ€Aminophosphonic Acids through Pudovik and Kabachnikâ€Fields Reaction. , 0, , .		1
54	Discovery of Octahydroisoindolone as a Scaffold for the Selective Inhibition of Chitinase B1 from Aspergillus fumigatus: In Silico Drug Design Studies. Molecules, 2021, 26, 7606.	3.8	1