Ellinor I B Peerschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/210548/publications.pdf

Version: 2024-02-01

65 papers 3,489 citations

28 h-index 57 g-index

65 all docs

65 does citations

65 times ranked 4375 citing authors

#	Article	IF	CITATIONS
1	Guideline for Reversal of Antithrombotics in Intracranial Hemorrhage. Neurocritical Care, 2016, 24, 6-46.	2.4	550
2	Senolytic CAR T cells reverse senescence-associated pathologies. Nature, 2020, 583, 127-132.	27.8	483
3	Complement activation on platelets: Implications for vascular inflammation and thrombosis. Molecular Immunology, 2010, 47, 2170-2175.	2.2	203
4	Staphylococcus aureus Protein A Recognizes Platelet gC1qR/p33: a Novel Mechanism for Staphylococcal Interactions with Platelets. Infection and Immunity, 2000, 68, 2061-2068.	2.2	173
5	gC1q-R/p33, a member of a new class of multifunctional and multicompartmental cellular proteins, is involved in inflammation and infection. Immunological Reviews, 2001, 180, 65-77.	6.0	166
6	cC1q-R (calreticulin) and gC1q-R/p33: ubiquitously expressed multi-ligand binding cellular proteins involved in inflammation and infection. Molecular Immunology, 2004, 41, 173-183.	2.2	133
7	Novel pathogenic mechanism and therapeutic approaches to angioedema associated with C1 inhibitor deficiency. Journal of Allergy and Clinical Immunology, 2009, 124, 1303-1310.e4.	2.9	94
8	Guideline for Reversal of Antithrombotics in Intracranial Hemorrhage: Executive Summary. A Statement for Healthcare Professionals From the Neurocritical Care Society and the Society of Critical Care Medicine. Critical Care Medicine, 2016, 44, 2251-2257.	0.9	92
9	The C1q Family of Proteins: Insights into the Emerging Non-Traditional Functions. Frontiers in Immunology, 2012, 3, .	4.8	87
10	Receptor for the globular heads of C1q (gC1q-R, p33, hyaluronan-binding protein) is preferentially expressed by adenocarcinoma cells. International Journal of Cancer, 2004, 110, 741-750.	5.1	83
11	Cooperation of C1q Receptors and Integrins in C1q-Mediated Endothelial Cell Adhesion and Spreading. Journal of Immunology, 2002, 168, 2441-2448.	0.8	80
12	The contribution of gC1qR/p33 in infection and inflammation. Immunobiology, 2007, 212, 333-342.	1.9	80
13	DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood, 2012, 120, 1228-1236.	1.4	62
14	Expression of gC1q-R/p33 and its major ligands in human atherosclerotic lesions. Molecular lmmunology, 2004, 41, 759-766.	2.2	56
15	Evidence that a $C1q/C1qR$ system regulates monocyte-derived dendritic cell differentiation at the interface of innate and acquired immunity. Innate Immunity, 2010, 16, 115-127.	2.4	55
16	cC1qR/CR and gC1qR/p33: Observations in cancer. Molecular Immunology, 2014, 61, 100-109.	2,2	55
17	gC1q-R/p33: Structure-Function Predictions from the Crystal Structure. Immunobiology, 2002, 205, 421-432.	1.9	53
18	Reference Range Determination for Whole-Blood Platelet Aggregation Using the Multiplate Analyzer. American Journal of Clinical Pathology, 2014, 142, 647-656.	0.7	53

#	Article	IF	Citations
19	The C1q Receptors: Focus on gC1qR/p33 (C1qBP, p32, HABP-1)1. Seminars in Immunology, 2019, 45, 101338.	5.6	52
20	Role of C1q and C1q Receptors in the Pathogenesis of Systemic Lupus Erythematosus., 2003, 7, 87-97.		46
21	gC1qR Expression in Normal and Pathologic Human Tissues. Journal of Histochemistry and Cytochemistry, 2012, 60, 467-474.	2.5	45
22	The complement and contact activation systems: partnership in pathogenesis beyond angioedema. Immunological Reviews, 2016, 274, 281-289.	6.0	41
23	gC1qR/p33 Blockade Reduces Staphylococcus aureus Colonization of Target Tissues in an Animal Model of Infective Endocarditis. Infection and Immunity, 2006, 74, 4418-4423.	2.2	39
24	Human blood platelet gC1qR/p33. Immunological Reviews, 2001, 180, 56-64.	6.0	37
25	Plasma DNA-Based Molecular Diagnosis, Prognostication, and Monitoring of Patients With EWSR1 Fusion-Positive Sarcomas. JCO Precision Oncology, 2017, 2017, 1-11.	3.0	36
26	Regulated complement deposition on the surface of human endothelial cells: Effect of tobacco smoke and shear stress. Thrombosis Research, 2008, 122, 221-228.	1.7	35
27	Classical pathway complement activation on human endothelial cells. Molecular Immunology, 2007, 44, 2228-2234.	2.2	33
28	Soluble gC1qR Is an Autocrine Signal That Induces B1R Expression on Endothelial Cells. Journal of Immunology, 2014, 192, 377-384.	0.8	32
29	Monocyte Expressed Macromolecular C1 and C1q Receptors as Molecular Sensors of Danger: Implications in SLE. Frontiers in Immunology, 2014, 5, 278.	4.8	32
30	Mechanisms of Ischemic Stroke in Patients with Cancer: A Prospective Study. Annals of Neurology, 2021, 90, 159-169.	5. 3	31
31	C1q as an autocrine and paracrine regulator of cellular functions. Molecular Immunology, 2017, 84, 26-33.	2.2	30
32	SARS-CoV-2 Exacerbates COVID-19 Pathology Through Activation of the Complement and Kinin Systems. Frontiers in Immunology, 2021, 12, 767347.	4.8	28
33	Loss of Mucosal p32/gC1qR/HABP1 Triggers Energy Deficiency and Impairs Goblet Cell Differentiation in Ulcerative Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 229-250.	4.5	27
34	Complement and coagulation: key triggers of COVID-19–induced multiorgan pathology. Journal of Clinical Investigation, 2020, 130, 5674-5676.	8.2	27
35	Evaluation of new automated hematopoietic progenitor cell analysis in the clinical management of peripheral blood stem cell collections. Transfusion, 2015, 55, 2001-2009.	1.6	25
36	The laboratory evaluation of platelet dysfunction. Clinics in Laboratory Medicine, 2002, 22, 405-420.	1.4	24

#	Article	IF	CITATIONS
37	Using the Hemoglobin Content of Reticulocytes (RET-He) to Evaluate Anemia in Patients With Cancer. American Journal of Clinical Pathology, 2014, 142, 506-512.	0.7	24
38	Activation-dependent surface expression of gC1qR/p33 on human blood platelets. Thrombosis and Haemostasis, 2003, 89, 331-9.	3.4	24
39	Examination of Platelet Function in Whole Blood Under Dynamic Flow Conditions With the Cone and Plate(let) Analyzer. American Journal of Clinical Pathology, 2007, 127, 422-428.	0.7	23
40	Structure? Function Studies Using Deletion Mutants Identify Domains of gC1qR/p33 as Potential Therapeutic Targets for Vascular Permeability and Inflammation. Frontiers in Immunology, 2011, 2, .	4.8	21
41	Cell Surface Expression and Function of the Macromolecular C1 Complex on the Surface of Human Monocytes. Frontiers in Immunology, 2012, 3, 38.	4.8	20
42	Ex vivo evaluation of erythrocytosis-enhanced platelet thrombus formation using the cone and plate(let) analyzer: effect of platelet antagonists. British Journal of Haematology, 2004, 127, 195-203.	2.5	18
43	Identification of the gC1qR sites for the HIV-1 viral envelope protein gp41 and the HCV core protein: Implications in viral-specific pathogenesis and therapy. Molecular Immunology, 2016, 74, 18-26.	2.2	17
44	Targeting gC1qR Domains for Therapy Against Infection and Inflammation. Advances in Experimental Medicine and Biology, 2013, 735, 97-110.	1.6	16
45	Analysis of the Interaction between Globular Head Modules of Human C1q and Its Candidate Receptor gC1qR. Frontiers in Immunology, 2016, 7, 567.	4.8	16
46	Blockade of gC1qR/p33, a receptor for C1q, inhibits adherence of Staphylococcus aureus to the microvascular endothelium. Microvascular Research, 2011, 82, 66-72.	2.5	14
47	Complement component C1q induces endothelial cell adhesion and spreading through a docking/signaling partnership of C1q receptors and integrins. International Immunopharmacology, 2003, 3, 299-310.	3.8	13
48	Is the A-Chain the Engine That Drives the Diversity of C1q Functions? Revisiting Its Unique Structure. Frontiers in Immunology, 2018, 9, 162.	4.8	13
49	gC1qR/HABP1/p32 Is a Potential New Therapeutic Target Against Mesothelioma. Frontiers in Oncology, 2020, 10, 1413.	2.8	13
50	Globular C1q Receptor (gC1qR/p32/HABP1) Is Overexpressed in Malignant Pleural Mesothelioma and Is Associated With Increased Survival in Surgical Patients Treated With Chemotherapy. Frontiers in Oncology, 2019, 9, 1042.	2.8	10
51	Proposed Research Training Guidelines for Residents in Laboratory Medicine. Clinics in Laboratory Medicine, 2007, 27, 241-253.	1.4	9
52	Thromboinflammation Supports Complement Activation in Cancer Patients With COVID-19. Frontiers in Immunology, 2021, 12, 716361.	4.8	9
53	Consensus Guidelines for Practical Competencies in Anatomic Pathology and Laboratory Medicine for the Undifferentiated Graduating Medical Student. Academic Pathology, 2015, 2, 2374289515605336.	1.1	8
54	Ischemic stroke with cancer: Hematologic and embolic biomarkers and clinical outcomes. Journal of Thrombosis and Haemostasis, 2022, 20, 2046-2057.	3.8	8

#	Article	IF	CITATIONS
55	SLE: Novel Postulates for Therapeutic Options. Frontiers in Immunology, 2020, 11, 583853.	4.8	6
56	Developing Quality Programs for Cell-Free DNA (cfDNA) Extraction from Peripheral Blood. journal of applied laboratory medicine, The, 2020, 5, 788-797.	1.3	6
57	Purification of C1q Receptors and Functional Analysis. Methods in Molecular Biology, 2014, 1100, 319-327.	0.9	5
58	Anti gC1qR/p32/HABP1 Antibody Therapy Decreases Tumor Growth in an Orthotopic Murine Xenotransplant Model of Triple Negative Breast Cancer. Antibodies, 2020, 9, 51.	2.5	5
59	Heterozygous P32/C1QBP/HABP1 Polymorphism rs56014026 Reduces Mitochondrial Oxidative Phosphorylation and Is Expressed in Low-grade Colorectal Carcinomas. Frontiers in Oncology, 2020, 10, 631592.	2.8	4
60	C1q is a molecular switch dictating the monocyte to dendritic cell (DC) transition and arrests DCs in an immature phenotype. FASEB Journal, 2008, 22, 673.1.	0.5	3
61	The Coags Uncomplicated App: Fulfilling Educational Gaps Around Diagnosis and Laboratory Testing of Coagulation Disorders. JMIR Medical Education, 2017, 3, e6.	2.6	3
62	HITTING the Diagnosis. American Journal of Clinical Pathology, 2018, 150, 116-120.	0.7	2
63	Activation of the Classical Pathway of Complement by Resting and Shear Stress-Stimulated Human Endothelial Cells Blood, 2005, 106, 2664-2664.	1.4	1
64	Choosing wisely during the COVID-19 pandemic: optimising outpatient cancer care while conserving resources with a new algorithm to report automated ANC results. Journal of Clinical Pathology, 2021, 74, 202-204.	2.0	0
65	Heritable platelet disorders: an enigma even guidelines can't unravel. British Journal of Haematology, 2021, 195, 13-14.	2.5	0